
Special Issue: RSS2022

The International Journal of
Robotics Research
2024, Vol. 43(4) 513–532
© The Author(s) 2024
Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/02783649241227559
journals.sagepub.com/home/ijr

Learning dexterity from human hand motion in
internet videos

Kenneth Shaw, Shikhar Bahl, Aravind Sivakumar, Aditya Kannan

and Deepak Pathak

Abstract
To build general robotic agents that can operate in many environments, it is often useful for robots to collect experience in the
real world. However, unguided experience collection is often not feasible due to safety, time, and hardware restrictions. We
thus propose leveraging the next best thing as real world experience: videos of humans using their hands. To utilize these
videos, we develop a method that retargets any 1st person or 3rd person video of human hands and arms into the robot hand
and arm trajectories. While retargeting is a difficult problem, our key insight is to rely on only internet human hand video to
train it. We use this method to present results in two areas: First, we build a system that enables any human to control a robot
hand and arm, simply by demonstrating motions with their own hand. The robot observes the human operator via a single
RGB camera and imitates their actions in real-time. This enables the robot to collect real-world experience safely using
supervision. See these results at https://robotic-telekinesis.github.io. Second, we retarget in-the-wild human internet video into
task-conditioned pseudo-robot trajectories to use as artificial robot experience. This learning algorithm leverages action
priors from human hand actions, visual features from the images, and physical priors from dynamical systems to pretrain
typical human behavior for a particular robot task. We show that by leveraging internet human hand experience, we need
fewer robot demonstrations compared to many other methods. See these results at https://video-dex.github.io

Keywords
Learning from internet video, dexterous robot hands

Received 24 February 2023; Revised 1 November 2023; Accepted 17 December 2023

Senior Editor: Jose-Luis Blanco

Associate Editor: Shoudong Huang

1. Introduction

The long-standing dream of many roboticists is to see robots
autonomously perform diverse tasks in diverse environ-
ments. To build a robot that can operate anywhere, many
methods rely on successful robotic interaction data to train
on. However, deploying inexperienced, real-world robots to
collect unrestricted real world experience may require
constant supervision which is infeasible. This poses a
chicken-and-egg problem for robot learning because to
collect successful experience safely, the robot already needs
to be experienced. How do we get around this issue?

Instead, we would like to side-step the data collection-
training loop and use human hand video experience to safely
control a robot hand or aid it in learning. This insight of
leveraging human videos to aid robotics is not new and has
seen immense attention from the vision community at large
(Damen et al., 2018; Goyal et al., 2017; Grauman et al., 2022).
However, most of this prior work tends to use human data as a
mechanism for pretraining just the visual representation (Nair
et al. 2018, 2022; Pinto et al., 2016; Sermanet et al., 2018;

Xiao et al., 2022), much like how deep learning has been used
as a pretraining tool in related areas of computer vision (Chen
et al., 2020; He et al., 2017) and natural language processing
(Brown et al., 2020; Devlin et al., 2018).

Our key idea is that we would like to watch the motion of
human hands and directly use that trajectory on the robot.
We call the method of detecting human motion from video
and converting it into robot trajectories for downstream
control or learning applications retargeting. However, re-
targeting human actions to robot actions is difficult because
there is a large embodiment gap and extracting 3D actions

Carnegie Mellon University, Pittsburgh, PA, USA

Corresponding authors:
Kenneth Shaw, Robotics Institute, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, PA 15213, USA.
Email: kshaw2@andrew.cmu.edu

Deepak Pathak Robotics Institute, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, PA 15213, USA.
Email: dpathak@cs.cmu.edu

https://uk.sagepub.com/en-gb/journals-permissions
https://doi.org/10.1177/02783649241227559
https://journals.sagepub.com/home/ijr
https://orcid.org/0009-0002-8571-2922
https://orcid.org/0000-0002-3104-7560
https://robotic-telekinesis.github.io
https://video-dex.github.io
mailto:kshaw2@andrew.cmu.edu
mailto:dpathak@cs.cmu.edu
http://crossmark.crossref.org/dialog/?doi=10.1177%2F02783649241227559&domain=pdf&date_stamp=2024-01-22

from 2D video is a severely under-constrained problem. Our
key insight is to leverage the vast corpus of human hand
poses from passive data on the web to train a retargeting
system from human pose to robot pose as seen in Figure 1.
This neural network learns to map across the large em-
bodiment gap between human and robot as described in
Handa et al. (2020) and Sivakumar et al. (2022). It uses
unpaired data of humans using their hands, and uses this to
learn how to control a robot hand. This method unlocks real-
time control and policy training from many different types
of human videos including third person or first person
sources.

To experiment with this retargeting method, we first
investigate using 3rd person human video information in
real-time. The objective of this experiment is to enable
teleoperation of a dexterous robotic hand, in the wild. This
means our system should be low-cost, work for any un-
trained operator in any environment, and use only a single
uncalibrated color camera. One should be able to simply
look into a monocular camera of their phone or tablet and
control the robot without relying on any bulky motion
capture or multi-camera rigs for accurate 3D estimation. We
call our system Robotic Telekinesis as it provides a human
the ability to control a dexterous robot from a distance
without any physical interaction as in Figure 2. This builds
on work published at RSS 2022 by Sivakumar et al., (2022).

Second, we apply this retargeting method to translate
egocentric human videos into pseudo-robot experience for
pretraining robot policies. We clip internet videos where
humans are performing actions similar to the desired robot
actions. Next, we retarget the video into the robot hand
embodiment to use as pseudo-robot experience. Finally, we
pretrain policies to act sensibly for many tasks without any
real robot experience, only synthetic experience generated
from human video. The priors are able to use human video
information to pretrain policies. To fine tune policies, we use
the aforementioned 3rd person human video and tele-
operation to bridge the gap between the internet human hand
embodiment and the robot hand embodiment. We call this
system Videodex as it learns dexterity from video. This builds
on work published at CoRL 2022 by Shaw et al., (2023b).

2. Related work

2.1. Learning action from videos

Detecting humans, estimating poses of different body parts,
and understanding the dynamics and interactions related to
human motion are commonly studied problems. One can
model human hands using the MANO (Romero et al., 2017)
parameterization as well as the human body using SMPL,
SMPL-X (Loper et al., 2015; Pavlakos et al., 2019) models.
There are many efforts in human pose estimation such as
(Kanazawa et al., 2017; Rong et al., 2021; Wang et al.,
2020). We focus on FrankMocap (Rong et al., 2021) for our
project as it is robust for online videos and provides good
hand-only estimation. Additionally, using these detectors

and watching humans can be powerful for controlling
computers. Traditionally, teleoperation approaches have
employed hand markers with gloves (Fang et al., 2019) for
motion capture (Han et al., 2018) or VR settings (Kumar
and Todorov 2015; Mannam et al., 2023). Without gloves,
Li et al. (Li et al., 2019) used depth images and a paired
human-robot dataset for teleoperating the Shadow Hand,
and Dexpilot (Handa et al., 2020) designed a system that
mimics the functional intent of the human operator to
perform object manipulation tasks.

2.2. Kinematic retargeting and
visual teleoperation

Human pose tracking only solves half of the visual tele-
operation problem. Mapping human poses to robot poses is
itself a difficult challenge because humans and robots have
very different kinematic structures. Li et al. (2019) train a
deep network to map human hand depth images to joint
angles in the robotic Shadow Hand, and Antotsiou et al.
(2018) combine inverse kinematics and Particle Swarm
Optimization to retarget human hand poses to a high-
dimensional robot hand model. Our system follows the
method of DexPilot Handa et al. (2020), which minimizes a

Figure 1. Our system leverages passive data from the internet to
enable robotic real-time imitation of human motion. This low-
cost system does not require any special gloves, mocap markers or
even camera calibration and works from a single RGB camera. The
left image depicts a random sample of grasps generated from
internet data.

Figure 2. An operator completing a dice pickup task while
watching the robot through a video conference. Video demos are
at https://robotic-telekinesis.github.io/.

514 The International Journal of Robotics Research 43(4)

https://robotic-telekinesis.github.io/

cost function that captures the functional similarity between
a human and a robot hand.

The general problem of kinematically retargeting motion
in one morphology into another is also studied outside of
robotic manipulation. Villegas et al. (2018) propose a cycle
consistency objective to transform motion between ani-
mated humanoid characters of different body shapes. Peng
et al. (2020) use an approach based on keypoint matching to
learn robotic locomotion behaviors from demonstrations of
walking dogs. Zakka et al. (2021) learn a visual reward
function that allows reinforcement learning agents to learn
from demonstrators with different embodiments.

2.3. Learning from large-scale datasets

There have been many efforts to collect and curate datasets
from internet human videos like FreiHand (Zimmermann
et al., 2019) for hand poses, 100 Days of Hands (Shan et al.,
2020) for hand-object interactions, Something-Something
(Goyal et al., 2017) for semantically similar interactions,
Human3.6M (Ionescu et al., 2013) and the CMU Mocap
Database (Hodgins) for Human pose estimation, Epic
Kitchens (Damen et al., 2018), ActivityNet datasets
(Heilbron et al., 2015), or YouCook (Das et al., 2013) for
action driven datasets. For dextrous manipulation, activity-
based datasets contain well-labelled atomic tasks that we
would like to solve.

2.4. Learning for dexterity

Human dexterity evolved with cognition in complementary
fashion (Ma and Dollar 2011). This leads us to study
dexterity to understand cognition in robot agents as well. To
create dexterity, reinforcement learning (RL) with an en-
gineered reward function can show good results in simu-
lation (Kalashnikov et al., 2018; Levine et al., 2016) but
requires lots of data, especially in high-dimensional dex-
terous manipulation. This requires simulators
(Makoviychuk et al., 2021; Todorov et al., 2012), which
cannot model physics (such as contact forces) or images
properly, making it difficult to transfer to the real-world
successfully. Agarwal et al. (2023) Imitation learning for
manipulation can be safer and more sample efficient. Be-
havior cloning is a common approach to learning (Bojarski
et al., 2016; Pomerleau 1988) and can work in the real
world. DIME (Arunachalam et al., 2022) involves using
nearest neighbor matching of the state or image represen-
tations of the scene with that of demonstrations to determine
actions. Qin et al. (2022) propose a method for pick-and-
place and opening door tasks that involves teleoperation and
learning policies in simulation, followed by Sim2Real
transfer. DexMV (Qin et al., 2021) uses collected human
hand videos for imitation learning on a robot hand. Simi-
larly, DexVIP and DEFT (Kannan et al., 2023; Mandikal
and Grauman 2022) learn human hand-object affordance
using curated internet video datasets and uses these priors as
RL initialization.

2.5. Robot learning by watching humans

Recent works have leveraged human datasets to learn cost
functions (Bahl et al., 2022; Chen et al., 2021; Mendonca
et al., 2023; Shao et al., 2021), learn action correspondences
(Schmeckpeper et al., 2020) both in a paired (Sharma et al.,
2019) and unpaired manner (Smith et al., 2020). This data
can also be used to extract explicit actions by leveraging
structure in the collection (such as reacher-grabber tools
(Young et al., 2020)) or prediction of future hand and object
locations (Lee and Ryoo 2017), as well as keypoint de-
tectors (Das et al., 2020). This can also be used to build
representations for robot learning (Bahl et al., 2023; Nair
et al., 2022; Pari et al., 2021). R3M (Nair et al., 2022) trains
on the Ego4D Grauman et al. (2022) dataset using a tem-
poral alignment loss between language labels and video
frames. We build on top of previous efforts in this area,
where we combine visual representations trained on human
activity data, with action driven representations.

3. Learning robot motion from human video

In this section, we establish how to learn and gather 3D
information of the human’s trajectory from watching 2D
human video. We break this retargeting process from video
into two pipelines: the hand and the arm. First, how do we
find robot hand finger joint configurations to match the
human hand finger configurations? Our key insight is to use
internet videos as training to learn how to map human hands
to robot hands, without even using paired data of robot
hands and human hands. Second, how do we find robot arm
configurations that match the human arm/wrist configura-
tions? Here, we rely on 3D model reconstructions of the
body to find the wrist with respect to the camera or the body
of the human. We generalize our method to utilize both 3rd
person video and egocentric video and show experiments
using both of these pipelines.

3.1. Hand pose energy function

3.1.1. 3D human hand pose estimation from 2D
images. The first step in hand retargeting is to detect the
operator’s hand in a 2D image and infer its 3D pose. While
the problem of inferring a 3D hand pose from a 2D image is
inherently under-constrained, we can leverage priors from
offline data and learn to accurately estimate physically
plausible hand poses. Thanks to recent advances in com-
puter vision, there are several paired 2D-3D datasets, and
several methods which use these datasets to train high-
quality 3D human pose estimators that operate on 2D
images.

To leverage such prior methods, we need to crop the
image to focus on the human hand. We first compute a
“crop” around the operator’s hand, based on a bounding box
computed using an off-the-shelf detector derived from
OpenPose (Cao et al. (2019)). This 2D body skeleton de-
tector is run over the entire image and outputs the predicted

Shaw et al. 515

pixel locations for each of the 18 keypoints on the skeleton.
The tight bounding rectangle around the points is then
computed, and a fixed padding is applied on all sides to
allow a margin of error. The resulting image crop goes to a
pose estimator from FrankMocap Rong et al. (2021) to
obtain hand shape and pose parameters of a 3D MANO
model Romero et al. (2017) of the operator’s right hand. See
the “OpenPose” and “FrankMocap”modules in the top row
of Figure 3 for a graphical depiction of this phase of the
pipeline.

A key point to note is our human hand pose estimation
module works for any human operator, with any un-
calibrated camera in any environment. By utilizing
pretrained state-of-the-art neural network detectors and
pose estimators, we indirectly leverage the millions of
images these models were trained on. These images
depict human hands in many poses against many back-
grounds, and as a result, our system can be used out of the
box for anyone.

3.1.2. 3D Human hand to robot hand pose. The next step is
to retarget the estimated 3D human hand pose to a vector of
16 joint angles on the hand that place the robot’s hand in an
analogous hand pose (see the third panel on the top branch
of Figure 3). This has three challenges:

· Underconstrained: The Allegro hand and the human
hand have very different embodiments, and differ greatly
in shape, size, and joint structure. This means the
mapping between a human hand pose and a robot hand
pose is not bijective; there could be multiple robot poses
that can correspond to a certain human pose, and vice-
versa. This issue is further magnified for high DoF
dexterous hand manipulators. This makes it challenging
to design a mapping from a human hand pose to a robot
hand pose.

· Robustness: Our solution must work for any human
operator trying to perform any kind of task in any en-
vironment. Notably, this means we cannot bias solutions
toward any particular type of motion, or hand type.

· Efficiency: We require our solution to be real-time at
inference without any lag. Empirically, we observe this
means that the robot must be able to follow the human at
least 15 Hz to solve tasks successfully via
teleoperation.

A natural way to address these three challenges would
be to train a model on a diverse dataset of paired human-
robot hand pose examples (similar to how the 3D human
hand estimation in Section 3.1.1 was trained on paired
examples of images and ground-truth target hand poses).
However, collecting such a paired dataset at large scale
would be prohibitively expensive, and furthermore, a new
dataset would have to be collected for each type of robot
hand. To get around this issue, we train a deep human-to-
robot hand retargeter network in a way that uses just the
human data itself and does need any supervision for the
target robot pose. The key idea is to formulate the human-
to-robot mapping problem using a feasibility objective
rather than a regression objective because the latter relies
on ground-truth target robot poses which are not avail-
able. We define an energy optimization procedure that
provides loose constraints on the robot hand poses the
retargeter network should output for a given hand pose.
Below, we describe the dataset used for training, and then
the training procedure.

3.1.2.1. Dataset of YouTube videos of human
interaction. We leverage a massive internet-scale dataset
of human hand images and videos. We gather about
20 million images from the Epic Kitchens Damen et al.
(2018) dataset, which captures egocentric videos of humans

Figure 3. A graphical description of our visual teleoperation pipeline from Robotic Telekinesis. First, a color camera captures an image
of the operator. Top: to command the robot hand, a crop of the operator’s hand is passed to a hand pose estimator, and the hand
retargeting network maps the estimated human hand pose to a robot hand pose. Bottom: to command the robot arm, a crop of the
operator’s body is passed to a body pose estimator and cross-body correspondences are used to determine the desired pose of the robot’s
end-effector from the estimated human body pose. Finally, commands are sent to both the robot hand and arm.

516 The International Journal of Robotics Research 43(4)

performing daily household tasks, and the 100 Days of
Hands Shan et al. (2020) dataset, which is a collection of
YouTube videos depicting a wide variety of human hand
activities. We run the hand pose estimator from Rong et al.
(2021) (the same one we use at deployment time in our
pipeline) to estimate human hand poses for each image
frame in these videos. We augment this massive noisy
dataset of estimated human hand poses with the small and
clean FreiHand dataset Zimmermann et al. (2019), which
contains ground-truth human hand poses for a diverse
collection of realistic hand configurations.

3.1.2.2. Retargeter network. Our hand retargeter net-
work is a Multi-Layer Perceptron (MLP), f (.), with two
hidden layers. It takes as input a human hand pose (a vector
x2R

55 that denotes the MANO hand shape and pose pa-
rameters) and outputs an Allegro hand pose y2R

16 (a
vector of Allegro joint angles). At inference time, we simply
pass the estimated hand shape/pose vector to the network,
which directly outputs Allegro joint angles that we can
command to the robot as shown in Figure 4. A key benefit of
using a neural network is speed: the network’s forward pass
takes about 3 ms (333 Hz)—this is critical for smooth real-
time teleoperation.

3.1.2.3. Optimization via energy minimization. Our
dataset contains millions of human hand poses, but no
ground-truth target robot poses to regress onto. In most
neural network setups, at training time, the network has
access to paired examples ðx2X , y2YÞ, where X is the
source domain, and Y is the target domain. In our case,
the source domain X is the set of all human hand poses
and the target domain Y is the set of all robot hand poses,
but we only have training data from the source domain.
Hence, we cannot perform a direct regression. To get
around this issue, we define an energy function E (x, y)
that captures the dissimilarity between the input 3D
human hand pose x and the network’s predicted robot
hand pose y. Per convention, a high energy means the two
poses are highly dissimilar. Assuming that we have de-
signed such an energy function, the neural network op-
timizes the following objective

argmin
f

Ex2X ½Eðx, f ðxÞÞ� (1)

3.1.2.4. Energy function formulation. Our energy
function is designed to capture the notion that for any
given human hand pose, the optimal corresponding robot
hand pose is the one that best mimics the functional intent
of the human as visualized in Figures 5 and 6. For ex-
ample, consider a human performing a pinch grasp with
the tips of their thumb and index finger 1 cm apart, while
simultaneously pressing a button with their outstretched
ring fingertip positioned 15 cm away from the center of
their palm. In order for the robot hand to effectively
mimic this action, the robot’s thumb and index fingertips
should also be 1 cm apart, and the robot’s ring fingertip
should be 15 cm away from its palm center as seen in
Figure 7.

This notion of functional intent is formalized by the
energy function, which captures the degree of (dis)-simi-
larity between a human hand pose and a robot hand pose.
Following Handa et al. (2020), we define a set of five hand
keypoints: the tips of the index, middle, ring and thumb

Figure 4. Human-to-robot Translations. The inputs and outputs
of our hand retargeting network. Each of the pairs depicts a
human hand pose and the retargeted Allegro hand pose.

Figure 5. To use internet videos as pseudo-robot experience, we retarget human hand detections from the 3D MANO model (Romero
et al., 2017) to 16 DoF robotic hand (LEAP) embodiment and we retarget the wrist from the moving camera to the xArm6 UFactory
embodiment. First person video examples are at https://video-dex.github.io.

Shaw et al. 517

https://video-dex.github.io

fingers, and the center of the palm. We define a set of ten
keyvectors, each of which connects a pair of keypoints.
Each keyvector has one endpoint designated as the origin,
and the other as the tip, and the vector is expressed in the
coordinate system of the origin keypoint. Our energy
function is a weighted sum of ten cost terms, where the i-th
cost term measures how much the i-th keyvector on the
posed human hand differs from the i-th key vector on the
posed robot hand (for more details, see appendix and
Figure 8 in Handa et al. (2020)).

3.1.2.5. Computing the keyvectors on the human
hand. We now describe how to compute the keyvectors on
the human hand, given the SMPL-X model parameters (βh,
θh). The first step is to use the SMPL-X model to generate a
full posed 3D mesh of the human hand. Given βh and θh
(and a template hand mesh), the SMPL-X model generates a
3D mesh that correctly captures the shape and pose of the
human hand. The next step is to transform these vertices into
a canonical coordinate frame, centered at the palm center,
with the positive x axis pointing out of the hand, the positive
y axis pointing toward the thumb, and the positive z axis
pointing toward the middle fingertip. This is done by ap-
plying a hand-coded transformation between the SMPL-X
coordinate frame and the canonical coordinate frame. The
next step is to compute the transformation between each of
the keypoint coordinate frames and the canonical coordinate
frame. This is done using the Kabsch–Umeyama Algorithm

Umeyama (1991) for estimating the transformation that best
aligns corresponding pairs of points. Concretely, for each
keypoint, we manually determine four vertices on the
template hand mesh: (1) the keypoint itself, (2) a vertex
located along 0.05 m along the positive x axis from the
keypoint, (3) a vertex located 0.05 m along the positive
y axis from the keypoint, and (4) a vertex located 0.05 m
along the positive z axis from the keypoint. This is pre-
computed once, up front. At runtime, for a given posed
human hand mesh, we gather the 3D coordinates for each of
these three points in the canonical coordinate frame. We
define a corresponding set of four points: {[0, 0, 0], [0.05, 0,
0], [0, 0.5, 0], [0, 0, 0.5]}, which denote the coordinates of
these points in the coordinate frame of the keypoint. Given
these four correspondences, the Kabsch–Umeyama com-
putes the transformation between the keypoint coordinate
frame and the canonical coordinate frame that best aligns
these corresponding point pairs.

3.1.2.6. Computing the keyvectors on the Allegro
hand. Here, we describe how to compute the keyvectors on
the Allegro hand, given a vector of Allegro hand joint
angles. The key idea here is to exploit forward kinematics.
The URDF of the Allegro hand defines the kinematic
skeleton of the Allegro hand. The forward kinematics map
takes as input a joint angle vector and outputs the trans-
formation between each link’s coordinate frame and the root
coordinate frame. Each of our keypoints conveniently
corresponds to a particular link on the Allegro hand, so the
keypoint coordinate frames can simply be read off from the
forward kinematics result.

Formally, the energy function between a human hand
pose (parameterized by the tuple (βh, θh)) and an Allegro
hand pose (parameterized by the joint angles qa) is com-
puted as follows. First, for each i 2 {1, …, 10}, the i-th
keyvector is computed on the human hand (call it vhi) and
the Allegro hand (call it vai). Then, each Allegro hand
keyvector vai is scaled by a constant ci. The i-th term in the

Figure 6. To use first or third person human videos as an action prior for training policies, we retarget them to the robot embodiment. The
detected human fingers are converted to the robot fingers using a learned energy function. The wrist pose is retargeted using the hand
detections and camera trajectory and transformed to the robot arm.

Figure 7. A trained self-collision classifier is used as an
adversarial loss that penalizes self-colliding joint configurations.
The blue arrows denote the forward pass, and the red arrows
denote the flow of gradients during the backward pass.

518 The International Journal of Robotics Research 43(4)

energy function is the Euclidean difference between vhi and
ci � vai

Eð ðβh, θhÞ, qa Þ ¼
X10
i¼1

��vhi � �
ci � vai

���2

2
(2)

where the scaling constants {ci} are hyperparameters.
Critically, this energy function is a fully differentiable
function of the Allegro joint angles because of the differ-
entiability of the forward kinematics operation (which is a
chain of sin/cos and matrix multiplications). This allows us
to train the hand retargeter network f via gradient descent,
using the energy function as a loss function. One should set
each ci to around 0.625 if the goal is to produce aesthetically
appealing retargeted Allegro hand poses. If the goal is to
maximize functional similarity, in theory, one should set
each ci to 1, to encourage perfect matching of each key-
vector. In practice, we use a scaling constant of 0.8 for each
of the finger-to-thumb and finger-to-finger keyvectors, and a
scaling constant of 0.5 for each of the finger-to-palm
keyvectors. This means that in order to ensure a stable
grasp, operators must squeeze their fingers closer together
than they normally would when grasping, but through our
human-subject study, we find that novice operators quickly
realize this and naturally adjust.

This energy optimization formulation has parallels to the
classical Inverse Kinematics (IK). However, while the
general IK problem is widely studied, our instantiation has a
key difference. The prototypical IK problem solves for joint
angles that achieve target fingertip poses relative to a fixed
point in the palm. However, our end-effector constraints are
all relative to each other, which makes it difficult to adopt
traditional powerful IK solvers such as (e.g., Carpentier
et al. (2019) or Buss and Kim (2005a)).

3.1.3. Collision avoidance via adversarial training. Using
a neural network to perform human-to-robot hand re-
targeting has another subtler advantage over an online
optimization approach: we can add terms that are slow to
compute to our energy function. During training time of the
neural network, we run expensive operations in order to
compute the loss at each iteration. Then we can absorb the
computation cost during training instead of incurring it at

deployment time. This allows us to use any energy function,
as long as it is differentiable.

We exploit this idea to address the problem of self-
collisions. Minimizing the keyvector-similarity energy
function described above can sometimes yield robot hand
joint configurations that place the hand such that fingers
collide with each other or with the palm. It is difficult to add
a term to the energy function that penalizes such configu-
rations as self-collision-ness is not a differentiable function
of the robot’s joint angles.

To address this, we first train a different neural network, a
classifier that takes in an Allegro joint angle vector, and tries
to classify whether or not the joint configuration yields a
self-collision. This classifier is an MLP, and we generate its
training data programmatically by repeatedly sampling a
joint angle vector within the legal joint limits, and querying
a (non-differentiable) self-collision checker to generate a
ground-truth binary self-collision label.

Once our self-collision classifier is trained, we use it as a
“discriminator” to train our retargeter network. At every
training iteration, we pass the predicted robot joint angle
vectors to the self-collision classifier. Intuitively, we want
the predicted self-collision score to be as low as possible,
and therefore we use it as a term in the loss function for the
retargeter network. The gradient of the self-collision score
from the collision network is backpropagated through the
self-collision classifier, and used to update the weights of the
retargeter network, as shown in Figure 7. This leads the
retargeter network to avoid outputting Allegro joint angle
configurations that the self-collision classifier believes to be
illegal. Our retargeter network and self-collision classifier
are akin to the generator and discriminator, respectively, in a
Generative Adversarial Network (GAN), though in our
case, we pretrain and freeze the self-collision classifier so
we don’t suffer the instability of jointly optimizing a dis-
criminator and a generator, notorious in GAN training.

3.2. 3rd person video: Wrist pose

A hand that can flex its fingers but does not have the
mobility of an arm will not be able to solve many useful
tasks. The second branch of our retargeting pipeline
therefore focuses on computing the correct pose for the

Figure 8. The collection of train objects (left) and test objects (right) used for experimentation in Videodex. Videodex utilizes retargeting
from 1st person internet videos and 3rd person video for teleoperation and demonstration collection.

Shaw et al. 519

robot arm from human images. In 3rd person video, we are
able to see the human torso and can use that as an anchor
point, which is useful in retargeting compared to in 1st
person video where this information is not available.

Because we aim to build a system that operates from a
single color camera, there are two main problems that arise.
(1) Without a depth sensor or camera intrinsics, we cannot
accurately estimate how far from the camera the human’s
wrist is. (2) Without camera extrinsics, there is no known
transformation between the camera, robot, and human. (If
there were, we could simply mount a camera with a fixed
known transformation relative to the robot’s base frame,
localize the position and orientation of the operator’s wrist
in the 3D camera coordinate frame, and use the known
camera transformation extrinsics to determine how the
robot’s wrist should be positioned and oriented).

To circumvent these issues, at each timestep, we estimate
the relative transformation between the human wrist, and
an anchor point on the human’s body, and use this to our
advantage. We define the human’s torso as the origin of an
anchor coordinate frame and choose a suitable point to serve
as the “robot’s torso.” (We manually chose a point 20 cm
directly above the robot’s base). We posit that the relative
transformation between the human’s right hand wrist and
torso should be the same as the relative transformation
between the robot’s wrist link and the robot’s torso. If the
operator’s hand were, say, 10 cm in front of their torso, the
robot’s hand should be 10 cm in front of its “torso.” If the
operator rotated their wrist so that the palm faced upward,
then the robot should rotate its wrist to make its palm face
upward.

Concretely, at each timestep, upon capturing an image of
the operator, we first compute a crop of the operator’s body
using a bounding box detector derived from OpenPose Cao
et al. (2019), then pass the crop to the body pose estimator
from FrankMocap Rong et al. (2021). We model the human
body using the parametric SMPL-X model, and the body
pose estimator predicts the 3D positions of the joints on the
human kinematic chain. By traversing the kinematic chain
from the torso joint to the right hand wrist joint, we compute
the relative position and orientation between the human’s
right hand wrist and torso (see Figure 3). The bottom row in
Figure 3 depicts this pipeline visually. This simple corre-
spondence trick works surprisingly well in practice and
provides a natural user experience for the operator.

We then use an IK solver Buss and Kim (2005b) to
compute arm joint angles that place the robot’s end-effector
at the correct relative transformation, relative to the “robot
torso” coordinate frame. To handle minor errors in human
body pose estimation and ensure smooth motion, we reject
outliers, and apply a low-pass filter on the stream of esti-
mated wrist poses. This low-pass filter is an Exponentially
Moving Average (EMA) of end-effector poses. This helps
ensure smooth motion in the presence of noise in the pose
estimation and retargeting modules. The following update
rule is used to update running average PEMA to incorporate
the new target pose Pnew

PEMA ¼ α � Pnew þ ð1� αÞ � PEMA (3)

We find α = 0.25 works well to create smooth trajectories.
We note that a lower value of α can introduce lag, but we
find that because our system runs at such a high frequency,
this is not an issue in practice. We finally send the smoothed
target joint angles to the xArm controller. See the bottom
row of Figure 9 for a depiction of our control stack.

3.3. Egocentric human videos: Wrist pose

While using the human’s torso as the origin of an anchor
coordinate frame is a useful trick, it does not work when the
torso is not visible such as in 1st person egocentric video. To
get around this problem, we instead must track the wrist
moving around in the camera and transform it toMWrist

Robot, the
pose of the wrist in a fixed, upright robot frame.

To find the transformation we are after, we break it into a
few parts that are composed together. First, to calculate
MWrist

Ct
, where Ct is the camera frame at timestep t, we le-

verage the Perspective-n-point algorithm (Fischler and
Bolles 1981). This takes 2D keypoint outputs (ui, vi) by
the hand detection model and 3D keypoints from the hand
model (xi, yi, zi) and computes MWrist

Ct
. Specifically, we are

given two sets of points, 16 points in 3D on each of the hand
model’s joints (MCP, PIP, DIP for each of the five fingers
plus a wrist) in the model’s frame ½Xw, Yw,Zw, 1�t and an-
other set of 16 2D points in image frame ½u, v, 1, �t

2
4u
v
1

3
5¼

2
4 fx 0 cx
0 fy cy
0 0 1

3
5
2
41 0 0 0
0 1 0 0
0 0 1 0

3
5 �

2
664
r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

3
775
2
664
Xw

Yw

Zw

1

3
775

We use the OpenCV3 solvePnPRANSAC to complete
this calculation. This implementation ensures that the
process is resilient to erroneous detections. To accurately
obtain camera intrinsics for PnP, COLMAP is used
(Schönberger et al., 2016).

In human egocentric video datasets, the position of the
camera is not always fixed because it is attached to the human’s
head. Thus, VideoDex deals with moving camera poses as well.
Specifically,we compute the transformation between the camera
pose in the first frame C1 and all other frames in the trajectory,
Ct. We call this transformMCt

C1
. To this end, we run monocular

SLAM, specifically ORBSLAM3 (Campos et al., 2021).
Computing poses in the first frame of the camera is

important but this is still not in the robot frame because the
robot is always upright but the camera is not. It is possible to
use camera data (accelerometer) to find this desired trans-
formwhich we callMC1

World . Many off-the-shelf cameras with
image stabilization save their acceleration data in the
metadata and this can be used to compute a transformation
between C1 and the upright world frame, MC1

World . For ex-
ample, camera’s acceleration data will return (0, 0, 9.8) m/s
when upright. We initially used the camera data to obtain the

520 The International Journal of Robotics Research 43(4)

vector α of pitch and roll that parameterizes MC1
World , using

the following equations

pitch ¼ tan�1

�
xAcc

� ffi
y2Acc þ z2Acc

q �
(4)

roll ¼ tan�1

�
yAcc

� ffi
x2Acc þ z2Acc

q �
(5)

However, using sensor data is not a general solution,
applicable to arbitrary human egocentric videos. Thus, we
develop an approach that does not rely on camera met-
adata. We recover object segmentations for surfaces that are
parallel to the floor such as tables, floors, counters, and similar
synonyms using a state-of-the-art object detector Detic Zhou
et al. (2022). We then compute an estimated depth map from
RGB frames only using Adabins Bhat et al. (2021). This does
not rely on the long-term contiguity of a video like most
SLAM approaches. We use depth map portions that corre-
spond to the relevant objects and calculate a surface normal
vector. We estimate α using this normal vector and the
previously aforementioned equations. We also remove the
dependency on gyroscope data in SLAM by assuming that
the scaling factor is 1.0. It is important to note that this wrist
retargeting approach uses only 2D images, which can be
obtained from human videos. We provided detailed abla-
tions on the parameterization of α in Section 5.2.

The robot frame has significant workspace limits that the
human does not have. Even if the human arm is smaller than
the robot’s, the human can walk around, whereas the robot
arm cannot move from the middle of the table. Because of
this, we must scale the size of the trajectory and center the
human starting pose on the robot so that the trajectory is
physically possible on the robot. We heuristically compute
TWorld
Robot which rescales and rotates the human trajectory in the

world frame τwristW into the robot trajectory τwristR .
We rescale each dimension of the arm trajectory as

TWorld
Robot ¼ MWristN

World þ robotWorkspaceCenter

�max
�
MWrist1::N

World

�þmin
�
MWrist1::N

World

�
2

(6)

Wewould like to generate more similar trajectories to use
in possible data augmentation. The naive method is to add
Gaussian noise to the trajectory. While this can be valid, it
adds noise to an already noisy system. Instead, we leverage
the coordinate frames to create more accurate trajectories.
We randomize the workspace scaling that is used by 10%.
Additionally, we create a rotation MWorld

World that rotates the
initial world frame by up to 10° in each fixed axis in roll
pitch yaw convention. This perturbs the direction that the
robot moves in its frame.

We interpolate the length of the trajectories using RBF
basis functions. All trajectories from the internet data are
rescaled to 200 datapoints. This uniformity enables efficient
batch training and was used for all of the results.

The final function to obtain MWrist
Robot can be described as

the composition of these four transformations as summa-
rized in Table 1

MWrist
Robot ¼ TWorld

Robot �MC1
World �MCt

C1
�Mwrist

Ct
(7)

4. Experiment descriptions

We study two applications of our novel retargeting scheme
presented in the previous section. First, how do we control
the robot hand arm system without relying on any bulky
motion capture or multi-camera rigs for accurate 3D esti-
mation. We use the retargeting in a system called Robotic
Telekinesis, as it provides a human the ability to control a
dexterous robot from a distance without any physical in-
teraction. Second, how do we generate robot data from
internet videos. Here we use the retargeting in a system
called VideoDex as it enables us to learn dexterous tasks
from internet videos.

Because of the retargeting scheme from Section 3, our
system is low-cost, glove-free, and marker-free, and it
requires only a single uncalibrated color camera with

Figure 9. Control Pipeline. Teleoperation from human video
requires a control pipeline that takes poses from the visual
teleoperation pipeline and controls the robot. Inverse kinematics,
low-pass filtering, sampling, and safety clipping are performed.
The output controls the robot.

Shaw et al. 521

which to view the operator from a 3rd person view. It
allows any operator to control a four-finger 16-DoF
Allegro hand, mounted on a robotic arm, simply by
moving their own hand and arm, as illustrated in Figure 1.
This system, because it is trained on internet videos, can
be used in real-time to control the robot arm and hand
system. The operator can even control the robot remotely.
For example, Figure 2 illustrates an operator solving a
grasping task while monitoring the robot through a video
conference feed.

We demonstrate the usability and versatility of our
system on 10 challenging dexterous manipulation tasks. We
further demonstrate the generality and robustness of our
system by performing a systematic study across ten pre-
viously untrained human operators.

4.1. Learning priors from 1st person
human video

In this experiment, we would like to learn general-purpose
manipulation by utilizing large scale human hand action
data from first person egocentric video available on the web
as seen in Figure 10. We would like to utilize these videos as
pseudo-robot experience in the robot embodiment. To do
this, we use the re-targeting system from Section 3 to re-
target the human data to the robot’s point of view.

By pretraining policies with this pseudo-robot data, we
learn action priors of the human hand encoded in the
network as an action representation. This differs from many
other representations such as Nair et al. (2022) that only
train visual priors of the scene. However, it’s notoriously
difficult to leverage these noisy human video detections.
Therefore, we must also employ a policy with physical
priors to learn smooth and robust policies that do not overfit
to noise. By putting this together, we leverage important
aspects of the human hand’s motion, intent, and interaction.
Another difficulty is that human arms and hands and robot
arms and hands have a very different shape and
embodiment.

Specifically, an open-loop policy π learns first from the
retargeted human trajectories (the action prior) and then
from real robot trajectories collected in teleoperation. Na-
ively, training a neural network policy on τR will lead to
overfitting to noisy hand detections. To circumvent this, we

first use visual priors from the visual ResNet-based He et al.
(2015) encoder provided by Nair et al. (2022), Ef. Then, we
introduce physical priors to the network backbone, the
physically inspired NDPs (Bahl et al., 2020, 2021).

We construct π with the following setup. We firstly
process the first scene image I with the visual encoder Ef.
Then the extracted features Ef(I) are used to cfondition an
NDP for the wrist and hand separately, fwrist and fhand.
Concretely, each NDP operates by processing the input
features with a small MLP which outputs w, g that are the
trajectory shape and goal parameters. The forward in-
tegrator of the NDP outputs an open-loop trajectory for
the hand and the wrist, bτR. We use the following loss
function

L ¼
X
k

LossL1ðτR � ½fhandðEfðIkÞÞ, fwristðEfðIkÞÞ�Þ

4.1.1. Training methodology for priors. We collect between
500 and 3000 video clips of humans completing the same
task as the robot will from the Epic Kitchens dataset (Damen
et al., 2018). For example, in pick, there are close to
3000 video clips of humans picking items. These are re-
targeted to the robot domain and used to pretrain the net-
work with the human action prior of the pick task. Then, the
final policy π is trained on a few teleoperated demonstra-
tions of pick on the real robot. The full training takes about
10 h on a single 2080Ti GPU. More training details can be
found in the appendix and in Algorithm 1. Our network
consists of the R3M (Nair et al., 2022) initialized ResNet-18
(He et al., 2015). We process these features with a 3 layer
MLP with a hidden layer size of 512, which are then
processed by 2 NDP (Bahl et al., 2020) networks.

4.1.2. Task setup for Videodex. We pretrain action priors on
retargeted Epic Kitchens data for seven robot tasks. Then,
we collect about 120–175 demonstrations for each of these
tasks on our setup to train the policy. (see Table 2) In pick,
the goal is to pick up an object. In rotate, the agent grasps
and rotates the object in place. In cover and uncover, the
goal is to cover or uncover a pan/plate with a soft cloth
object. Push involves flicking/poking an object with the
fingers. In place, the robot has to pick up an object and place
it into a plate, pan, or pot. In open, we open three different

Table 1. Transformations required to calculate wrist in robot frame from passive videos to use in learning. M denotes a transformation
matrix, where T is a general transformation.

Transforms Description Method

MWrist
Ct

Wrist in each camera FrankMocap + PnP

MCt
C1

Track moving camera IMU/ORBSLAM

MC1
World

Make camera parallel to ground IMU/Stabilization sensor

TWorld
Robot

Rescale and reorient for robot Heuristic

MWrist
Robot TWorld

Robot �MC1
World �MCt

C1
�Mwrist

Ct

522 The International Journal of Robotics Research 43(4)

drawers. Our testing procedure consists of unseen locations
and objects. Details on the tasks and objects are in the
supplemental.

While robot hands can provide great dexterity, we also
investigate whether 2-finger grippers can benefit from ac-
tion priors. The internet data is converted to where the
closed human hand is a closed 2-finger gripper, and the open
human hand is an open 2-finger gripper. We collect separate
demonstrations on the real robot using the 2-finger gripper
from xArm UFactory. Separate action priors are trained for
the 16 DoF LEAP Hand (Shaw et al., 2023a) and the 2-
finger gripper.

4.2. Hardware setup

Our hardware setup consists of a LEAP 16 DOF Hand and
an XArm 6 manipulator (from Ufactory). The hand is
mounted on the wrist of the xArm. We use Intel Realsense
D415 cameras to collect human teleoperation and robot
videos. We use four NVIDIA RTX 2080TI’s for training the
policy and two Nvidia RTX 3080s for the teleoperated
system.

In our experiments, we tried using the Allegro Hand
Lee et al. (2017) and LEAP Hand Shaw et al. (2023a). We
found that the Allegro had higher inaccuracy in control
and more hardware failures as compared to LEAP Hand.
LEAP Hand outperformed the Allegro Hand 7 � 12% on
average in all experiments, thus, we use it for our setup
Shaw et al. (2023a).

5. Results

We show results from the two applications of this re-
targeting methodology. First, we teleoperate the robot arm
and hand system using a single monocular camera in Ro-
botic Telekinesis. Second, we retarget videos from the in-
ternet videos to use as pseudo-robot experience for policy
pretraining in Videodex.

5.1. Robotic telekinesis: Teleoperation from
human video

We evaluate the strengths and limitations of our system
through experiments on a diverse suite of dexterous ma-
nipulation tasks with an expert operator. We also demon-
strate the usability and robustness of the system through a
smaller set of tasks on a group of ten previously untrained
operators. Videos can be found at https://robotic-telekinesis.
github.io/.

Baseline Our hand retargeter neural network is com-
pared to an online optimization procedure that runs online
gradient descent to minimize the energy function between
the human and robot hand. We call this baseline DexPilot-
Monocular*: the use of online optimization for retargeting is
modeled after DexPilot Handa et al. (2020), but the overall
system (including the single-camera setup) is held constant
between the baseline and our method. At each timestep,
given an estimated human hand pose x, a solver iteratively
searches for the robot pose y* that minimizes the energy
(cost) function L with respect to x, that is

y* ¼ argmin
y

Lðx, yÞ (8)

Figure 10. In Videodex, we retarget human videos as an action prior, use pretrainined embeddings as a visual prior, and use Neural
Dynamical Policies (NDPs) Bahl et al. (2020) as a physical prior to complete many different tasks on a robotic hand.

Table 2. Left: Number of trajectories we used for each task. Robot
data is collected locally using teleportation. Most of these
trajectories are 5–15 s in length and capture the motion trajectory
of the task and visual data. Right: The number of different objects
we used for each task’s data collection. In our testing, we show
generalization outside of this set of objects.

Task Robot demos Objects

Pick 125 8
Rotate 140 8
Open 120 4
Cover 124 12
Uncover 145 12
Place 175 10
Push 136 14

Shaw et al. 523

https://robotic-telekinesis.github.io/
https://robotic-telekinesis.github.io/

The code for DexPilot’s Handa et al. (2020) kinematic
retargeting module is not available, so we implement their
online optimization solver using the Jax GPU-accelerated
auto-differentiation engine Bradbury et al. (2018).

We do not compare our system to the full DexPilot
system. DexPilot is designed for use in a specific multi-
camera rig, but our system is designed to run anywhere. The
DexPilot-Monocular* baseline is meant to enable analysis
of the tradeoffs between online optimization and neural
networks for kinematic retargeting, within a single-camera
setup. It uses the retargeting module from DexPilot Handa
et al. (2020), but is otherwise identical to our system.

5.1.1. Success rate: Trained operator study. A trained
operator attempted a diverse set of tasks to test the capa-
bilities of our system and the DexPilot-Monocular* base-
line. These tasks are shown in Figure 11. They span a
diverse spectrum of arm and hand motions and involved
interacting with a variety of different objects. Each of the ten
tasks was run for ten trials with a timeout period of 1 minute.
This rigorously tested the system’s capabilities and limi-
tations. These tasks are described in Table 3. The operator
achieved good success on all tasks—our system out-
performed the baseline on 7 out of 10 tasks and performed
similarly on the other 3 tasks. Grasping plush objects proved
easy as these grasps do not require much precision, but we
observed that fine-grained grasps of smaller, more slippery
objects like plastic cups occasionally proved difficult. See
videos of the trained operator completing these tasks at:
https://robotic-telekinesis.github.io/.

During experiments, the expert found that our system
was easier to use and performed better than DexPilot-
Monocular*. The online gradient descent solver in the
baseline occasionally stayed stuck in local minima because
it would use the previous pose as a seed. This meant that the

hand would often output unnatural poses with the fingers
digging into the palm, an issue that the authors of DexPilot
also noted. Our method, because it was trained on YouTube
data, learned to always output natural hand poses which was
useful for operators to use. Since it is not seeded, our
method did not get stuck in minima. This data also masked
the ambiguities and errors from our single camera-
constrained setup. Our method also produced occasional
errors on uncommon hand poses unseen in the training set,
but these one-off errors did not propagate forward through
time. Additionally, the baseline ran at a slower rate and felt
delayed to the operator’s movements as benchmarked in
Table 4. This was jarring and hard to compensate for when
trying to complete dexterous tasks. Our system maintained
fluidity and felt very responsive when opening and closing
the hand.

5.1.2. Usability: Human-subject study. To test usability and
generality, we conducted a human-subject study in which
10 previously untrained operators each completed a set of
3 tasks, 7 times each. The first task was a plush dice pickup
task (30 s timeout), the second was drawer opening (30 s
timeout), and last was to place a cup onto a plate (60 s
timeout). The total time for one human subject to learn
about the system and complete all tasks took approximately
15 min. Figure 12 reports the completion times of each
operator on each of the three tasks.

Although the underlying technology is complex, the user
interface was easy to understand and use for all operators.
Each operator differed in their style of motion, stances, and
appearances, but there were no noticeable discrepancies in
the behavior of the system or the distribution of results.

We found that subjects often struggled during the first
few trials. However, all subjects found it easy to adjust and
learn how to use the system very quickly. Our system was

Figure 11. Ten different teleoperation tasks. Top row, left to right: Pickup Dice Toy, Pickup Dinosaur Doll, Box Rotation, Scissor Pickup,
Cup Stack. Bottom row, left to right: two cup stacking, pouring cubes onto plate, cup into plate, open drawer and open drawer and
pickup cup. Please see videos at https://robotic-telekinesis.github.io/.

524 The International Journal of Robotics Research 43(4)

https://robotic-telekinesis.github.io/
https://robotic-telekinesis.github.io/

often complimented on its responsiveness and fluidity:
subjects did not notice any lag or jitter in the robot’s imi-
tation. Subjects enjoyed participating in the study, and some
said that teleoperation of the robot was similar to a video
game. Additionally, subjects noted they felt safe and
comfortable during teleoperation.

The largest challenges with the system were periodic
errors in the retargeting of the human fingers to the Allegro
robot hand. Many subjects noted instances when they were
attempting complicated hand poses, but our system failed to
accurately imitate them. In particular, we noticed systematic
errors of our system in handling the flexion of the thumb.
The shape and joint axes of the Allegro hand thumb are
particularly different from that of the human thumb, and we
suspect that our energy function does not place enough
weight on accurate thumb retargeting. Some subjects ob-
served that the system was worse at tracking their hand
when it was all the way open with their palm parallel to the
camera, this is a particular issue that we cannot get around
with a single camera setup.

5.2. VideoDex: Learning priors from 1st person
human video

We perform thorough real world experiments on manipu-
lation tasks, specifically many tasks that require dexterity as
in Figure 13. See our webpage for result videos. We aim to
answer the following questions. (1) Is VideoDex able to
perform general-purpose open-loop manipulation? (2) How
much does the action prior of VideoDex help? (3) How
much does the physical prior of the NDPs in VideoDex
help? (4) What important design choices are there (visual
priors, physical priors, or training setup)?

First, we evaluate the need for initialization with the
action priors obtained from the human internet videos. The

baseline without internet pretraining is called BC-NDP. It
uses the same physical prior and visual network initiali-
zation, without the initialization from θh. We also compare
the effect of the action prior on 2-finger gripper policies.
Second, we compare against two standard open-loop be-
havior cloning approaches introduced in recent benchmarks
(Dasari et al., 2021). BC-open uses a 2 layer MLP instead of
the NDP network. BC-RNN, uses an RNN to pre-process
the visual features and then a two-stream, 2 layer MLP for
wrist and hand trajectories. We try an offline RL ablation
CQL (Kumar et al., 2020), where we use the demonstrations
as a sparse reward. We train a behavior cloning policy with
the action prior from human videos without the physical
prior of the NDP. We call this VideoDex-BC-Open. We
ablate the type of visual representation and prior use by
trying an initialization using the VGG16 network
(Simonyan and Zisserman 2014) (VideoDex-VGG) and the
MVP network (He et al., 2022; Xiao et al., 2022)
(VideoDex-MVP) based representation trained for robot
learning. We ablate the need for a two-stream policy, instead
training a single NDP for both hand and wrist. (VideoDex-
Single) To see if VideoDex works with fewer

Table 3. Success rate and completion time (Mean and standard deviation) of a trained operator completing a variety of tasks using two
different methods. The DexPilot-Monocular* baseline is nearly identical to our system, but uses online gradient descent for hand pose
retargeting (Inspired by DexPilot Handa et al. (2020)). Our system, which uses a neural network retargeter, outperforms the baseline in 7
out of 10 tasks.

Task

Success (rate) Completion time (sec)

Ours
DexPilot-
Mono* Ours

DexPilot-
Mono* Description

Pickup dice toy 0.9 0.7 8.6 (2.65) 13.5 (5.47) Pickup plush dice from table.
Pickup dinosaur doll 0.9 0.6 8.2 (3.49) 11.00 (3.95) Pickup plush dinosaur from table.
Box rotation 0.6 0.3 37.2 (12.6) 16.33 (10.69) Rotate box 90° onto the smaller side.
Scissor pickup 0.7 0.5 28.6 (9.4) 27.66 (11.09) Remove scissors from the box using fingers.
Cup stack 0.6 0.7 21.5 (7.6) 22.85 (16.57) Smaller cup must be placed inside the large cup.
Two cup stacking 0.3 0.1 27.3 (11.0) 45.00 (0.0) Small cup placed into medium cup into large cup.
Pouring cubes onto plate 0.7 0.5 36.80 (17.7) 13.8 (4.02) Five cubes in a cup must be poured onto a plate.
Cup into plate 0.8 0.7 10.6 (4.4) 13.71 (5.44) Place cup on the plate.
Open drawer 0.9 0.9 23.6 (12.3) 14.88 (4.40) Open clear drawer.
Open drawer and pickup cup 0.6 0.7 33.7 (8.1) 28.14 (11.48) Open clear drawer and pickup cup inside.

Table 4. Runtime of each stage of our pipeline. Our hand
retargeter NN runs at 24 Hz (the online gradient-descent baseline
runs at 10 Hz). Both systems use an AMD 3960x CPU and two
3080 Ti GPUs.

Pipeline stage Ours (Hz)

Open pose body (input from camera) 29
Open pose hand (input from camera) 29
Frank Mocap body 16
Frank Mocap hand 27
Body pose retargeter (output to robot) 16
Hand retargeter (output to robot) 24

Shaw et al. 525

demonstrations (around 50 demonstrations, 5–7 per variant
only), we train a policy called VideoDex-Constrained.

We analyze the results of our experiments and the
guiding questions discussed. We present the results of our
findings as a 0–1 success rate in Table 6 and the result of the
ablations we ran on the place task in Table 5.

5.2.1. Effect of action priors. We firstly compare VideoDex
against methods that do not employ an action prior trained
on human data, as explained in Section 4.1. For almost all of
the tasks, VideoDex either outperforms baselines or has a
similar performance, especially for held-out objects/
instances. We believe that one of the key aspects of Vid-
eoDex generalizing to test objects is the action prior pre-
training on human videos. This can be seen in Figure 14.
Without ever training on the robot demonstrations, the
trajectories initialized using the action prior pretrained
network θh (left) are much closer to the ground-truth tra-
jectories of a network that is initialized using only a visual
prior such as the encoder from Nair et al. (2022) (right).
From the results, we see that VideoDex-BC-Open with
action priors (Table 5) outperforms BC-Open. Having a
physical prior added (BC-NDP) tends to help, but it is not
the case for every task. We suspect that some tasks require
smoother behavior than others. Additionally, in Table 5 our
offline RL baseline, CQL (Kumar et al., 2020) does not
perform as well as the rest of the approaches, even under-
performing the Behavior Cloning setup. Qualitatively, we

see a much less smooth and less safe execution with this
method, thus, we only perform it on one task (place). Note
that we use the same visual prior for this as well.

5.2.2. Effect of visual priors. We compared using our ap-
proach with MVP (VideoDex-MVP) (Xiao et al., 2022) and
VGG (VideoDex-VGG) (Simonyan and Zisserman 2014)

Figure 12. Ten novice operators were asked to complete tasks: (1) picking up a plush dice, (2) opening a plastic drawer, and (3) placing a
cup onto a plate. For each task, the mean and standard deviation completion times were computed over seven trials.

Figure 13. Tasks used in experiments. From left to right: pick, rotate, open, cover, uncover, place and push. See https://video-dex.github.
io for videos of these tasks.

Table 5. We present the results of the ablations discussed in
section 5.2. These are all performed on the place task.

Train Test

Baselines:
BC-NDP (Bahl et al., 2021) 0.70 0.35
BC-Open (Dasari et al., 2021) 0.40 0.25
BC-RNN (Dasari et al., 2021) 0.70 0.50
CQL (Kumar et al., 2020) 0.40 0.20

No Physical Prior:
VideoDex-BC-open 0.50 0.50
VideoDex-single 0.50 0.30

Visual Prior Ablation:
VideoDex-VGG 0.20 0.20
VideoDex-MVP 0.40 0.20

Constrained Data:
VideoDex-const-5 0.80 0.60
VideoDex-const-10 0.50 0.30
VideoDex (ours) 0.90 0.70

526 The International Journal of Robotics Research 43(4)

https://video-dex.github.io
https://video-dex.github.io

and their performance was below VideoDex using Nair et al.
(2022). This is likely because both encoders are much larger
than the ResNet18 (He et al., 2015) we use and require a lot
more training time than feasible on human videos. However,
VideoDex-MVP still performs better than VideoDex-VGG,
which indicates that using a visual prior trained on human
data does in fact help, as Xiao et al. (2022) trained the
representation in self-supervised fashion on videos and use
the embeddings to perform robotics tasks in simulation. We
see in Table 6, that while visual priors are important, action
priors are more impactful.

5.2.3. Effect of physical priors and architectural
choices. We compare different types of physical priors in
Table 6 and in Table 5. In general, (BC-NDP) tends to
outperform baselines without a physical prior, except for
BC-RNN in a couple of tasks. BC-RNN performs less
aggressive behavior, which allowed it to efficiently grasp
more objects. In Table 5, it’s shown that an important
physical prior is to treat the wrist and the hand in a more
disentangled manner, as the performance for VideoDex-
Single tends to drop compared to BC-NDP and VideoDex-
BC-Open (Behavior Cloning with our action prior pre-
training). The two-stream architecture aids in learning, as it
allows the policy to disentangle the actions of the wrist and
the hand. This is important as the same grasp might be used
for picking objects in many different locations, and

similarly, it is possible to localize many objects and perform
completely different types of interactions.

5.2.4. Comparing effects of actions, visual, and physical
priors. Firstly, we ran an ablation where we pertained a
policy on human videos performing the place task and fi-
netune it on the uncover task (using robot data). Similarly,
we pretrained a policy on Uncover and finetuned on Place.
The results are in the below table under VideoDex-Transfer.
We see that for both tasks, the performance degrades
slightly, especially in the place task. We also train by adding
noise to the demonstration trajectories, by adding two
different levels of Gaussian noise with standard deviation
being 0.01 and 0.05, shown as VideoDex-Noise-0.01 and
VideoDex-Noise-0.05. We find that adding more noise
definitely hurts the performance of the method. We also
train ResNet18 (He et al., 2015) features initialized from
ImageNet (Deng et al., 2009) training instead of the R3M
(Nair et al., 2022) features, and the results in VideoDex-
ImageNet. We can see that performance drops off, which
indicates that visual priors are important. Note that all of the
reported numbers are on test objects. We present the results
in Table 7.

5.2.5. Generalization with less data. We limit VideoDex to a
maximum of 5 and 10 teleoperated demonstrations per variant
(we have 12–15 variants in our setup). As shown in Table 6,
even with 5 instances per variant, we still see a 30% success
rate for unseen objects. Empirically, the policies generally go
to the right area but are not able to grasp objects properly.With
less robot experience, VideoDex outperforms which demon-
strates that action priors also boost sample efficiency.

5.2.6. Hand versus 2-finger gripper. We compare whether
the action priors from VideoDex also help in the more
general 1-DOF gripper setting. In Table 8, we find that in the
1-DOF setting, VideoDex still improves performance on
these tasks. This is because the priors from human internet
videos still encode typical wrist trajectory behaviors as well
as when the gripper should close for each task.

6. Hand retargeting analysis

In this section, we analyze the finger retargeting method
introduced in Section 3 that goes from human hand to robot
hand. We analyze its accuracy and the effect of the self-

Figure 14. Networks initialized using action priors on human data
without further training are closer to ground-truth robot
trajectories than networks only initialized using visual priors.

Table 6. We present the results of train objects and test objects for Videodex and baselines for each task as described.

Pick Rotate Open Cover Uncover Place Push

Train Test Train Test Train Test Train Test Train Test Train Test Train Test

BC-NDP (Bahl et al., 2021) 0.64 0.38 0.94 0.56 0.90 0.60 0.78 0.58 0.88 0.82 0.70 0.35 1.00 0.71
BC-Open (Dasari et al., 2021) 0.50 0.44 0.72 0.38 0.80 0.40 0.44 0.58 1.00 0.91 0.40 0.25 1.00 0.93
BC-RNN (Dasari et al., 2021) 0.56 0.31 0.78 0.50 0.90 0.50 0.56 0.42 0.88 0.75 0.70 0.50 1.00 1.00
VideoDex 0.83 0.77 0.85 0.71 0.80 0.80 0.75 0.63 0.96 0.92 0.89 0.80 1.00 1.00

Shaw et al. 527

collision classifier for hand retargeting. We also analyze the
initial pose orientation computation for the 3rd person video
retargeting of the wrist.

6.1. Accuracy of retargeter network

We compare the accuracy of DexPilot-Monocular*’s online
optimization with our neural network retargeter that relies on
offline optimization during training. We gather a test set of
500 sequences from the DexYCB video dataset Chao et al.
(2021), which contains videos with annotated ground-truth
human hand poses. For each video, at each time step, the poses
are fed to both our neural network and DexPilot-Monocular*
with a (generous) time budget of 40 ms to solve. We em-
phasize that both retargeters optimize the same energy
function but in different ways.

We do not, however, have access to “ground-truth”
Allegro joint angles against which to compare the output
of the two retargeters. To circumvent this, we design a
version of DexPilot-Monocular* that is allowed an infinite
time budget to run until convergence. We call this the
pseudo-ground-truth oracle, and our assumption is that its
final output is as close to optimal as possible.

We compare the root mean squared error (RMSE) be-
tween the oracle’s outputs and the outputs of each of our two
retargeters on the dataset. Our neural network retargeter
outperforms DexPilot-Monocular* in matching the oracle.
The neural network retargeter achieves an RMSE of 0.17
radians (about 10°), while DexPilot-Monocular* achieves
an RMSE of 0.25 radians per joint (about 14°).

6.2. Self-collision avoidance

We perform an ablation on the weight of the self-collision
classifier (Section 3.1.3) in the energy function, to see how it
affects the behavior of the hand retargeter. We use a test set of
3000 held-out hand poses from the FreiHand dataset
(Zimmermann et al., 2019) and consider 6 different hand
retargeter networks, trained with collision-loss weights of 0,
0.2, 0.4, 0.6, 0.8, and 1. (Aweight of 0.8, e.g., means that the
self-collision loss is weighed 0.8 as heavily as the sum of all
the other key-vector matching loss terms in the energy
function). Each network makes predictions on the data and we
compute (1) the fraction of resultingAllegro joint angle vectors
that result in self-collision, and (2) the average value of the
key-vector energy terms over the dataset.

We summarize the results in Figure 15. The plot shows
there is a trade-off between minimizing self-collisions and
minimizing key-vector dissimilarity. As we increase the
weighting term of the self-collision avoidance loss term in
the energy function, we produce fewer offending joint
configurations but minimization performance degrades for
the other terms in the energy function. We depict this trade-
off visually in Figure 16. It is difficult to confidently assert
that one is more valuable than the other, and in practice, we
find that a middle ground works very effectively for the user.

6.3. Initial pose computation comparison

We compare three different ways to estimate αp orM
C1
World, the

vector that points parallel to gravity. These methods contrast
with VideoDex which uses the surface normal of objects that
are typically parallel with the floor to calculate the direction of
gravity. VideoDex-Fixed, assumes that αp is [0,0]. This is
reasonable as we are not relying on robots to exactly mimic the
human but get a general action prior. VideoDex-Random
randomizesαp in the range of 15–45°, which is the typical
egocentric camera angle. VideoDex-IMU uses the internal
image stabilization sensor data to estimate the upright vector.

Table 7. Ablations that compare effects of different action, visual
and physical priors, as well as seeing how pretraining on different
data transfers to other tasks.

Method/Task Place Uncover

VideoDex-Noise-0.01 0.55 0.87
VideoDex-Noise-0.05 0.50 0.60
VideoDex-ImageNet 0.40 0.62
VideoDex-Transfer 0.60 0.87
VideoDex-Original 0.70 0.90

Table 8. We compare how the 1-DOF xArm gripper performs
using Videodex. UFactory separate demonstrations were collected
using this gripper. While Videodex improves the performance of
the final 1-DOF system, the improvment here is less than that from
the 16DOF allegro hand.

Place Open Pick

1-DOF Gripper Results:
1-DOF BC-Open 0.62 0.69 0.71
1-DOF VideoDex 0.69 0.82 0.77

Improvement of Videodex from BC-Open:
1-DOF improvement 0.07 0.13 0.06
Hand improvement 0.55 0.4 0.33

Figure 15. As the weight of the adversarial self-collision loss is
increased, the hand retargeter network produces fewer self-
colliding joint configurations (maroon), but incurs a higher energy
with less similar poses (blue). A higher energy means that the
predicted robot hand pose is dissimilar to the operator’s hand pose.

528 The International Journal of Robotics Research 43(4)

None of these approaches use gyroscope data in SLAM, as we
assume that the scaling factor is 1.0. In Table 9, we present the
results of these experiments. The performance degrades when
randomizing or setting MC1

World to a fixed value, in all three of
the tasks, but it is still comparable to or better than our
baselines that do not use any human action data. A possible
explanation for the fact that VideoDex-Surface performed
better than our VideoDex-IMU is that the sensor data may be
noisy and estimating surface normals from visual features is
more robust.

7. Conclusion

We present two systems using our retargeting system from
human video to robot actions. First, we introduced Robotic
Telekinesis, a system for in-the-wild, real-time, remote vi-
sual teleoperation of a dexterous robotic hand and arm, in
which a human operator demonstrates tasks to the robot just
by moving their own hands. We leverage the latest ad-
vancements in 3D human pose estimation and thousands of
hours of raw day-to-day human footage on the internet to
train a system that can understand human motion, and

retarget it to corresponding robot actions. Our method re-
quires only a single color camera and can be used out-of-
the-box by any operator on any task, without any actively
collected robot training data. We show that our system
enables experts and novices alike to successfully perform a
number of different dexterous manipulation tasks. Second,
we introduce Videodex which leverages visual, action, and
physical priors from human video datasets to guide robot
behavior. These actions and physical priors in the neural
network dictate the typical human behavior for a particular
robot task. We test our approach on a robot arm and dex-
terous hand-based system and show strong results on
various manipulation tasks, outperforming various state-of-
the-art methods. We hope that this retargeting method and
learning from human videos will have many possible ap-
plications in the future.

Acknowledgements

We are grateful to Ankur Handa for initial feedback and to Murtaza
Dalal, Russell Mendonca, Jianren Wang, and Sudeep Dasari for
feedback on the project. We would also like to thank Murtaza
Dalal, Alex Li, Kathryn Chen, Ankit Ramchandani, Ananye
Agarwal, Jianren Wang, Zipeng Fu, Shivam Duggal, and Sam
Triest for helping with experiments.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding

The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: KS is
supported by NSF Graduate Research Fellowship under Grant No.
DGE2140739. The work was supported in part by NSF IIS-
2024594, ONRN00014-22-1-2096, GoodAI Research Award, and
by the Samsung GRO Research Award.

ORCID iDs

Kenneth Shaw https://orcid.org/0009-0002-8571-2922
Aditya Kannan https://orcid.org/0000-0002-3104-7560

References

Agarwal A, Uppal S, Shaw K, et al. (2023) Dexterous functional
grasping. In: Conference on robot learning. PMLR,
3453–3467.

Antotsiou D, Garcia-Hernando G and Kim TK (2018) Task-
oriented hand motion retargeting for dexterous manipula-
tion imitation. In: Proceedings of the European conference on
computer vision (ECCV) workshops. Munich, Germany,
8 September–14 September 2018.

Arunachalam SP, Silwal S, Evans B, et al. (2022) Dexterous
Imitation Made Easy: A Learning-Based Framework for
Efficient Dexterous Manipulation. DOI: 10.48550/ARXIV.
2203.13251. https://arxiv.org/abs/2203.13251

Figure 16. The contribution of an adversarial self-collision loss.
The red boxes highlight instances where the vanilla retargeting
network outputs Allegro hand poses that result in self-collision. The
green boxes depict the predictions of the network trained with self-
collision loss. These robot hand poses maintain functional
similarity to the human’s hand pose, but avoid self-collision.

Table 9. Ablations that compare the different ways of calculating
the initial pitch of the camera with respect to gravity, on test
objects. This enables us to transform human trajectories to be
upright like the robot is.

Place Cover Uncover

Videodex-Fixed 0.55 0.50 0.77
Videodex-Random 0.45 0.63 0.85
Videodex-IMU 0.70 0.67 0.90
VideoDex 0.80 0.63 0.92

Shaw et al. 529

https://orcid.org/0009-0002-8571-2922
https://orcid.org/0009-0002-8571-2922
https://orcid.org/0000-0002-3104-7560
https://orcid.org/0000-0002-3104-7560
https://doi.org/10.48550/ARXIV.2203.13251
https://doi.org/10.48550/ARXIV.2203.13251
https://arxiv.org/abs/2203.13251

Bahl S, Mukadam M, Gupta A, et al. (2020) Neural dynamic
policies for end-to-end sensorimotor learning. In: NeurIPS.

Bahl S, Gupta A and Pathak D (2021) Hierarchical Neural Dy-
namic Policies. RSS.

Bahl S, Gupta A and Pathak D (2022)Human-to-robot Imitation in
the Wild. RSS.

Bahl S, Mendonca R, Chen L, et al. (2023) Affordances from
human videos as a versatile representation for robotics. In:
Proceedings of the IEEE/CVF Conference on computer vi-
sion and pattern recognition, Vancouver, BC, Canada,
17 June–24 June 2023, 13778–13790.

Bhat SF, Alhashim I and Wonka P (2021) Adabins: depth esti-
mation using adaptive bins. In: Proceedings of the IEEE/CVF
Conference on computer vision and pattern recognition,
Nashville, TN, USA, 20 June–25 June 2021, 4009–4018.

Bojarski M, Del Testa D, Dworakowski D, et al. (2016) End to End
Learning for Self-Driving Cars. DOI: 10.48550/ARXIV.
1604.07316. https://arxiv.org/abs/1604.07316.

Bradbury J, Frostig R, Hawkins P, et al. (2018) JAX: Composable
Transformations of Python+NumPy Programs. https://
github.com/google/jax

Brown TB, Mann B, Ryder N, et al. (2020) Language Models Are
Few-Shot Learners. arXiv.

Buss SR and Kim JS (2005a) Selectively damped least squares for
inverse kinematics. The Journal of Graphics Tools 10(3): 37–49.

Buss SR and Kim JS (2005b) Selectively damped least squares for
inverse kinematics. The Journal of Graphics Tools 10(3):
37–49. DOI: 10.1080/2151237X.2005.10129202

Campos C, Elvira R, Rodŕıguez JJG, et al. (2021) Orb-slam3: an ac-
curate open-source library for visual, visual–inertial, andmultimap
slam. IEEE Transactions on Robotics 37(6): 1874–1890.

Cao Z, Hidalgo G, Simon T, et al. (2019) Openpose: realtime
multi-person 2d pose estimation using part affinity fields.
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 43(1): 172–186.

Carpentier J, Saurel G, Buondonno G, et al. (2019) The pinocchio
c++ library – a fast and flexible implementation of rigid body
dynamics algorithms and their analytical derivatives. In: IEEE
International Symposium on System Integrations (SII). IEEE.

Chao YW, Yang W, Xiang Y, et al. (2021) DexYCB: a benchmark
for capturing hand grasping of objects. In: IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), Nashville, TN, USA, 20 June–25 June 2021.

Chen T, Kornblith S, Norouzi M, et al. (2020) A simple framework
for contrastive learning of visual representations. In: HD III
and A Singh (eds) Proceedings of the 37th International
conference on machine learning, proceedings of machine
learning research. PMLR, Vol. 119, 1597–1607. URL https://
proceedings.mlr.press/v119/chen20j.html

Chen AS, Nair S and Finn C (2021) Learning Generalizable
Robotic Reward Functions from” In-The-Wild” Human
Videos. arXiv preprint arXiv:2103.16817.

Damen D, Doughty H, Farinella GM, et al. (2018) Scaling ego-
centric vision: the epic-kitchens dataset. In: European con-
ference on computer vision (ECCV). Springer.

Das P, Xu C, Doell RF, et al. (2013) A thousand frames in just a few
words: lingual description of videos through latent topics and

sparse object stitching. In: Proceedings of the IEEE Con-
ference on computer vision and pattern recognition. IEEE,
2634–2641.

Das N, Bechtle S, Davchev T, et al. (2020) Model-based Inverse
Reinforcement Learning from Visual Demonstrations. arXiv
preprint arXiv:2010.09034.

Dasari S, Wang J, Hong J, et al. (2021) Rb2: robotic manipulation
benchmarking with a twist. In: NeurIPS datasets and
benchmarks track (Round 2). NIPS.

Deng J, Dong W, Socher R, et al. (2009) Imagenet: a large-scale
hierarchical image database. In: 2009 IEEE Conference on
computer vision and pattern recognition. IEEE, pp. 248–255.

Devlin J, Chang MW, Lee K, et al. (2018) Bert: Pre-training of
Deep Bidirectional Transformers for Language Under-
standing. arXiv preprint arXiv:1810.04805.

Fang B, Wei X, Sun F, et al. (2019) Skill learning for human-robot
interaction using wearable device. Tsinghua Science and
Technology 24(6): 654–662.

Fischler MA and Bolles RC (1981) Random sample consensus: a
paradigm for model fitting with applications to image analysis
and automated cartography. Communications of the ACM
24(6): 381–395. DOI: 10.1145/358669.358692

Goyal R, Ebrahimi Kahou S, Michalski V, et al. (2017) The
”something something” video database for learning and
evaluating visual common sense. In: Proceedings of the
IEEE International conference on computer vision (ICCV).
IEEE.

Grauman K, Westbury A, Byrne E, et al. (2022) Ego4d: around the
world in 3,000 hours of egocentric video. In: Proceedings of
the IEEE/CVF Conference on computer vision and pattern
recognition. IEEE, 18995–19012.

Han S, Liu B, Wang R, et al. (2018) Online optical marker-based
hand tracking with deep labels. ACM Transactions on
Graphics 37(4): 1–10.

Handa A, Van Wyk K, Yang W, et al. (2020) Dexpilot: vision-based
teleoperation of dexterous robotic hand-arm system. In:
2020 IEEE International conference on robotics and automation
(ICRA). IEEE, 9164–9170. DOI: 10.1109/ICRA40945.2020.
9197124

He K, Zhang X, Ren S, et al. (2015) Deep Residual Learning for
Image Recognition. CoRR abs/1512.03385. URL https://
arxiv.org/abs/1512.03385

He K, Gkioxari G, Dollar P, et al. (2017) Mask r-cnn. In: Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV). IEEE.

He K, Chen X, Xie S, et al. (2022) Masked autoencoders are
scalable vision learners. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
IEEE, 16000–16009.

Heilbron FC, Escorcia V, Ghanem B, et al. (2015) Activitynet: a
large-scale video benchmark for human activity under-
standing. In: CVPR, 961–970.

Hodgins J (n.d) Cmu Graphics Lab Motion Capture Database.
https://mocap.cs.cmu.edu/

Ionescu C, Papava D, Olaru V, et al. (2013) Human3. 6 m: large
scale datasets and predictive methods for 3D human
sensing in natural environments. IEEE Transactions

530 The International Journal of Robotics Research 43(4)

https://doi.org/10.48550/ARXIV.1604.07316
https://doi.org/10.48550/ARXIV.1604.07316
https://arxiv.org/abs/1604.07316
https://github.com/google/jax
https://github.com/google/jax
https://doi.org/10.1080/2151237X.2005.10129202
https://proceedings.mlr.press/v119/chen20j.html
https://proceedings.mlr.press/v119/chen20j.html
https://doi.org/10.1145/358669.358692
https://doi.org/10.1109/ICRA40945.2020.9197124
https://doi.org/10.1109/ICRA40945.2020.9197124
https://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1512.03385
https://mocap.cs.cmu.edu/

on Pattern Analysis and Machine Intelligence 36(7):
1325–1339.

Kalashnikov D, Irpan A, Pastor P, et al. (2018) Qt-opt: Scalable
Deep Reinforcement Learning for Vision-Based Robotic
Manipulation. arXiv preprint arXiv:1806.10293.

Kanazawa A, Black MJ, Jacobs DW, et al. (2017) End-to-End
Recovery of Human Shape and Pose. CoRR abs/171206584.
URL https://arxiv.org/abs/1712.06584

Kannan A, Shaw K, Bahl S, et al. (2023) Deft: Dexterous Fine-
Tuning for Real-World Hand Policies. CoRL.

Kumar Vand Todorov E (2015) Mujoco haptix: a virtual reality
system for hand manipulation. In: 2015 IEEE-RAS 15th
International conference on humanoid robots (Human-
oids), Seoul, Korea, 3 November–5 November 2015,
657–663. DOI: 10.1109/HUMANOIDS.2015.7363441

Kumar A, Zhou A, Tucker G, et al. (2020) Conservative q-learning
for offline reinforcement learning. Advances in Neural In-
formation Processing Systems 33: 1179–1191.

Lee J and Ryoo MS (2017) Learning robot activities from first-
person human videos using convolutional future regression.
In: CVPR Workshops, 1–2.

Lee DH, Park JH, Park SW, et al. (2017) Kitech-hand: a highly
dexterous and modularized robotic hand. IEEE/ASME
Transactions on Mechatronics 22(2): 876–887. DOI: 10.
1109/TMECH.2016.2634602

Levine S, Finn C, Darrell T, et al. (2016) End-to-end Training of
Deep Visuomotor Policies. JMLR.

Li S, Ma X, Liang H, et al. (2019) Vision-based teleoperation of
shadow dexterous hand using end-to-end deep neural net-
work. In: 2019 International Conference on Robotics and
Automation (ICRA). IEEE, 416–422.

Loper M, Mahmood N, Romero J, et al. (2015) Smpl: a skinned
multi-person linear model. ACM Transactions on Graphics
34(6): 1–16.

Ma RR and Dollar AM (2011) On dexterity and dexterous ma-
nipulation. In: 2011 15th International Conference on Ad-
vanced Robotics. ICAR, Tallinn, Estonia, 20 June–23 June
2011, 1–7. DOI: 10.1109/ICAR.2011.6088576

Makoviychuk V, Wawrzyniak L, Guo Y, et al. (2021) Isaac Gym:
High Performance Gpu-Based Physics Simulation for Robot
Learning. arXiv preprint arXiv:2108.10470.

Mandikal P and Grauman K (2022) Dexvip: learning dexterous
grasping with human hand pose priors from video. In:
Conference on Robot Learning, Atlanta, GA, 6 November–
9 November, 2023. PMLR, 651–661.

Mannam P, Shaw K, Bauer D, et al. (2023) Designing anthro-
pomorphic soft hands through interaction. In: 2023 IEEE--
RAS 22nd International Conference on Humanoid Robots
(Humanoids). IEEE, 1–8. DOI: 10.1109/Humanoids57100.
2023.10375195

Mendonca R, Bahl S and Pathak D (2023) Structured World Models
from Human Videos. arXiv preprint arXiv:2308.10901.

Nair AV, Pong V, Dalal M, et al. (2018) Visual reinforcement
learning with imagined goals. In: NeurIPS. pp: 9191–9200.

Nair S, Rajeswaran A, Kumar V, et al. (2022) R3m: A Universal
Visual Representation for Robot Manipulation. arXiv preprint
arXiv:2203.12601.

Pari J, Muhammad N, Arunachalam SP, et al. (2021) The Sur-
prising Effectiveness of Representation Learning for Visual
Imitation. arXiv preprint arXiv:2112.01511.

Pavlakos G, Choutas V, Ghorbani N, et al. (2019) Expressive body
capture: 3D hands, face, and body from a single image. In:
Proceedings IEEE Conf. On Computer Vision and Pattern
Recognition (CVPR). IEEE, 10975–10985.

Peng XB, Coumans E, Zhang T, et al. (2020) Learning Agile
Robotic Locomotion Skills by Imitating Animals. arXiv
preprint arXiv:2004.00784.

Pinto L, Gandhi D, Han Y, et al. (2016) The Curious Robot: Learning
Visual Representations via Physical Interactions. ECCV.

Pomerleau DA (1988) Alvinn: an autonomous land vehicle in a
neural network. In: D Touretzky (ed) Advances in neural
information processing systems. Morgan-Kaufmann, Vol. 1.
h t t p s : / / p r oceed ing s . n eu r i p s . c c / p ape r / 1988 /fi l e /
812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf

Qin Y, Wu YH, Liu S, et al. (2021) Dexmv: Imitation Learning for
Dexterous Manipulation from Human Videos. arXiv preprint
arXiv:2108.05877.

Qin Y, Su H and Wang X (2022) From One Hand to Multiple
Hands: Imitation Learning for Dexterous Manipulation from
Single-Camera Teleoperation. DOI: 10.48550/ARXIV.2204.
12490. https://arxiv.org/abs/2204.12490

Romero J, Tzionas D and Black MJ (2017) Embodied hands:
modeling and capturing hands and bodies together. ACM
Transactions on Graphics 36(6): 1–17.

Rong Y, Shiratori Tand Joo H (2021) Frankmocap: a monocular 3d
whole-body pose estimation system via regression and in-
tegration. In: Proceedings of the IEEE/CVF International
conference on computer vision (ICCV) workshops. IEEE,
1749–1759.

Schmeckpeper K, Rybkin O, Daniilidis K, et al. (2020) Rein-
forcement Learning with Videos: Combining Offline Obser-
vations with Interaction. arXiv preprint arXiv:2011.06507.

Schönberger JL, Zheng E, Pollefeys M, et al. (2016) Pixelwise view
selection for unstructured multi-view stereo. In: European
conference on computer vision (ECCV). Springer Science.

Sermanet P, Lynch C, Chebotar Y, et al. (2018) Time-contrastive
networks: self-supervised learning from video. In: ICRA,
Brisbane, QLD, Australia. IEEE.

Shan D, Geng J, Shu M, et al. (2020) Understanding human hands
in contact at internet scale. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition.
IEEE, 9869–9878.

Shao L, Migimatsu T, Zhang Q, et al. (2021) Concept2robot:
learning manipulation concepts from instructions and human
demonstrations. The International Journal of Robotics
Research 40(12-14): 1419–1434.

Sharma P, Pathak D and Gupta A (2019) Third-Person Visual
Imitation Learning via Decoupled Hierarchical Controller.
arXiv preprint arXiv:1911.09676 32.

Shaw K, Agarwal A and Pathak D (2023a) Leap Hand: Low-Cost,
Efficient, and Anthropomorphic Hand for Robot Learning. RSS.

Shaw K, Bahl S and Pathak D (2023b) Videodex: learning dex-
terity from internet videos. In: Conference on robot learning.
PMLR, 654–665.

Shaw et al. 531

https://arxiv.org/abs/1712.06584
https://doi.org/10.1109/HUMANOIDS.2015.7363441
https://doi.org/10.1109/TMECH.2016.2634602
https://doi.org/10.1109/TMECH.2016.2634602
https://doi.org/10.1109/ICAR.2011.6088576
https://doi.org/10.1109/Humanoids57100.2023.10375195
https://doi.org/10.1109/Humanoids57100.2023.10375195
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://proceedings.neurips.cc/paper/1988/file/812b4ba287f5ee0bc9d43bbf5bbe87fb-Paper.pdf
https://doi.org/10.48550/ARXIV.2204.12490
https://doi.org/10.48550/ARXIV.2204.12490
https://arxiv.org/abs/2204.12490

Simonyan K and Zisserman A (2014) Very Deep Convolutional
Networks for Large-Scale Image Recognition. arXiv preprint
arXiv:1409.1556.

Sivakumar A, Shaw K and Pathak D (2022) Robotic Telekinesis:
Learning a Robotic Hand Imitator by Watching Humans on
Youtube. arXiv.

Smith L, Dhawan N, Zhang M, et al. (2020) Avid: Learning Multi-
Stage Tasks via Pixel-Level Translation of Human Videos. RSS.

Todorov E, Erez T and Tassa Y (2012)MuJoCo: A Physics Engine
for Model-Based Control. IROS.

UFactory (n.d) xarm6 by ufactory. https://www.ufactory.cc/xarm-
collaborative-robot

Umeyama S (1991) Least-squares estimation of transformation
parameters between two point patterns. IEEE Transactions on
Pattern Analysis and Machine Intelligence 13(04): 376–380.

Villegas R, Yang J, Ceylan D, et al. (2018) Neural Kinematic
Networks for Unsupervised Motion Retargetting. CoRR abs/
1804.05653. URL https://arxiv.org/abs/1804.05653

Wang J, Mueller F, Bernard F, et al. (2020) Rgb2hands: real-time
tracking of 3d hand interactions from monocular RGB video.
ACM Transactions on Graphics 39(6): 1–16.

Xiao T, Radosavovic I, Darrell T, et al. (2022) Masked Visual
Pre-training for Motor Control. arXiv preprint arXiv:
2203.06173.

Young S, Gandhi D, Tulsiani S, et al. (2020) Visual Imitation Made
Easy. arXiv preprint arXiv:2008.04899.

Zakka K, Zeng A, Florence P, et al. (2021) Xirl: Cross-
Embodiment Inverse Reinforcement Learning. arXiv preprint
arXiv:2106.03911.

Zhou X, Girdhar R, Joulin A, et al. (2022) Detecting Twenty-
Thousand Classes Using Image-Level Supervision. ECCV.

Zimmermann C, Ceylan D, Yang J, et al. (2019) Freihand: a dataset
for markerless capture of hand pose and shape from single
RGB images. In: Proceedings of the IEEE/CVF International
conference on computer vision, Seoul, Korea, 27 October–
28 October 2019, 813–822.

532 The International Journal of Robotics Research 43(4)

https://www.ufactory.cc/xarm-collaborative-robot
https://www.ufactory.cc/xarm-collaborative-robot
https://arxiv.org/abs/1804.05653

	Learning dexterity from human hand motion in internet videos
	1. Introduction
	2. Related work
	2.1. Learning action from videos
	2.2. Kinematic retargeting and visual teleoperation
	2.3. Learning from large-scale datasets
	2.4. Learning for dexterity
	2.5. Robot learning by watching humans

	3. Learning robot motion from human video
	3.1. Hand pose energy function
	3.1.1. 3D human hand pose estimation from 2D images
	3.1.2. 3D Human hand to robot hand pose
	3.1.2.1. Dataset of YouTube videos of human interaction
	3.1.2.2. Retargeter network
	3.1.2.3. Optimization via energy minimization
	3.1.2.4. Energy function formulation
	3.1.2.5. Computing the keyvectors on the human hand
	3.1.2.6. Computing the keyvectors on the Allegro hand

	3.1.3. Collision avoidance via adversarial training

	3.2. 3rd person video: Wrist pose
	3.3. Egocentric human videos: Wrist pose

	4. Experiment descriptions
	4.1. Learning priors from 1st person human video
	4.1.1. Training methodology for priors
	4.1.2. Task setup for Videodex

	4.2. Hardware setup

	5. Results
	5.1. Robotic telekinesis: Teleoperation from human video
	5.1.1. Success rate: Trained operator study
	5.1.2. Usability: Human-subject study

	5.2. VideoDex: Learning priors from 1st person human video
	5.2.1. Effect of action priors
	5.2.2. Effect of visual priors
	5.2.3. Effect of physical priors and architectural choices
	5.2.4. Comparing effects of actions, visual, and physical priors
	5.2.5. Generalization with less data
	5.2.6. Hand versus 2

	6. Hand retargeting analysis
	6.1. Accuracy of retargeter network
	6.2. Self-collision avoidance
	6.3. Initial pose computation comparison

	7. Conclusion
	Acknowledgements
	Declaration of conflicting interests
	Funding
	ORCID iDs
	References

