
Learning Visual Locomotion with Cross-Modal Supervision

Antonio Loquercio*, Ashish Kumar*, Jitendra Malik

Fig. 1: The deployed walking policy shown above only uses a monocular egocentric RGB stream and proprioception. The
terrains include stairs (up to 19cm high), curbs (up to 20cm high), slopes (35◦), dirt roads, and unstructured construction
sites. Several of these require precise foothold placement which is achieved by predicting the upcoming terrain using a
visual lookahead module. This module is trained entirely in the real world. To do so, our proposed algorithm Cross-Modal
Supervision(CMS) uses onboard proprioception to supervise the vision module. This naturally allows the policy to continually
learn in the real world with its own experience. We show one such progression of continual learning at the bottom, where
the policy goes from an initial success rate of 40% to 100% with less than 30 minutes of real-world data. Video results and
code at https://antonilo.github.io/vision_locomotion/.

Abstract— In this work, we show how to learn a visual
walking policy that only uses a monocular RGB camera and
proprioception to walk. Since simulating RGB is hard, we
necessarily have to learn vision in the real world. We start with
a blind walking policy trained in simulation. This policy can
traverse some terrains in the real world but often struggles
since it lacks knowledge of the upcoming geometry. This can
be resolved with the use of vision. We train a visual module
in the real world to predict the upcoming terrain with our
proposed algorithm Cross-Modal Supervision (CMS). CMS uses
time-shifted proprioception to supervise vision and allows the
policy to continually improve with more real-world experience.
We evaluate our vision-based walking policy over a diverse set
of terrains including stairs (up to 19cm high), slippery slopes
(inclination of 35◦), curbs and tall steps (up to 20cm), and
complex discrete terrains. We achieve this performance with
less than 30 minutes of real-world data. Finally, we show that

* denotes equal contribution. All authors are affiliated to UC Berkeley

our policy can adapt to shifts in the visual field with a limited
amount of real-world experience.

I. INTRODUCTION

Gibson famously said that “We see in order to move and
we move in order to see". For land animals, if we interpret
moving as walking, we might say “we see in order to walk
and we walk in order to see". Taken literally, this statement
is surely false because obviously blind humans can walk.
Blind robots can walk too [1], [2]. However Gibson wasn’t
completely wrong either – while blind people can walk,
they find it challenging to walk, and cannot walk as fast on
complex terrains such as stairs. They have to probe gently
with a walking stick first before they can start walking safely.
Research on human vision [3], [4], [5], [6] shows that
vision gives us "look-ahead" - when we can see the ground

https://antonilo.github.io/vision_locomotion/

0.2

0.4

0.6

0.8

1

Day 1 Day 2 Day 3

Success Rate
CMS Error

0.5 1.0 1.5 2.0

Time [s]

0.4

0.8

1.2

∞
t

Vision

Proprioception

Time-Shifted Proprioception (Target)

Time Shifted

Time (s)

Visual Lookahead Target
Prediction From Vision

CMS Error

Proprioceptive
Prediction

Motor Policy
100 Hz at

x(t), a(t-1)

x(t-50), a(t-50)

x(t-1), a(t-1)

. . .

Proprioception

Vision Frames

Adaptation
Module
90 Hz

γ0
t , γ5

t , γ15
t

zt

100 Hz

15 Hz

Deployment

Cross Modal Supervision

Fig. 2: Top: During deployment, we use an adaptation module to predict the extrinsic parameters zt and an estimate of
the terrain geometry below, 5cm, and 15cm in front of the robot (γ0, γ5, γ15) from egocentric RGB and proprioception.
Bottom: We train the visual module in the real world to predict a time-shifted proprioceptive estimate of the terrain’s slope
by minimizing the CMS Error. We observe that CMS enables the adaptation module to improve continually with more
real-world experience. On the bottom right we see that as the CMS error decreases the walking policy improves.

ahead of us, our foot placement is smoother and the walking
more efficient. We study this question in a robotics context.
This paper is about our development of walking policies for
quadruped robots, using the visual system for look-ahead–
predicting the height of the terrain in front of the robot before
it gets there. Unsurprisingly, we found that policies with look-
ahead indeed do better than blind ones (see Figure 1), thus
validating the spirit, if not the letter of Gibson’s statement.

A vision sensor in a robotics context could be a single
RGB camera, or one of the many different devices directly
capturing depth using stereopsis or LIDAR for instance. Our
decision was to go for RGB cameras since (1) there is
evidence from human vision that stereo input contributes
relatively little to making walking faster/more efficient [6]
(2) for objects in terrestrial perspective, priors enable one to
make reasonable depth estimates even from a single image [7]
(3) the multiple views captured by a moving robot could in
theory be exploited to recover depth directly as well [8]. We
don’t wish to argue our point too strongly – there has been
passionate but not necessarily productive debate on this in
the context of self-driving cars already – but just say that
the RGB version is scientifically interesting and there might
also be engineering contexts where it is favored (cost, power,
passive sensing). From a research novelty perspective, there
are several systems which exploit depth input for guiding
walking [9], [10], whereas the RGB only design choice has
hardly been studied.

The RGB only choice leads to a technical challenge. The

most popular techniques for training walking policies with
RL typically train in simulation and then deploy zero shot in
the real world [1], [2]. This works out fine with depth inputs
because the sim-to-real gap for depth is small, and multiple
systems have been successfully demonstrated for walking and
flying [11], [9], [10]. However rendered RGB images in a
simulator look very different from those in the real world.
The higher the fidelity desired in the rendering, the greater
the computational cost, which makes it practically infeasible
to use in an inner loop for training RL policies because of
their high sample complexity.

Our core insight is that we can train the vision part of
our policy in the real world from onboard sensors, while
still managing to train the action policy in a simulator. In a
simulator we can train policies which don’t use vision but
"cheat" - they have access to look-ahead information of terrain
height at a few "look-ahead" points ahead of the robot - and
then it is a separate problem to train a vision system from
real world experience which can predict the terrain height at
those look-ahead points. This vision system is trained using
cross-modal supervision (CMS) from proprioception with
a time lag - I see a point A ahead of me whose height is
currently unknown, but when my feet get to A, then its height
can be inferred from the joint angles of my body. There is a
"chicken-and-egg" aspect to this - to develop a vision system
which can provide look-ahead for walking, you need to be
able to walk first to get the data to provide the supervision
for the vision system! Fortunately, there is no infinite regress

problem here, as the robot can walk (clumsily of course)
when blind, so the bootstrapping can start from there.

Experiments show that our policy can walk over a diverse
set of terrains including stairs (up to 19cm high), slippery
slopes (inclination of 35◦), curbs and tall steps (up to 20cm),
and complex discrete terrains from a single onboard RGB
camera and proprioception. To systematically understand the
improvements over the initially deployed policy, we take 4
real-world stair cases on which the initial blind policy starts
off at around 50%, and compare the performance of the visual
walking policy as it improves with experience. We find that
in all these cases, the visual walking policy reaches 100%
performance with less than 30 minutes of data, collected
across 4 days.(Figure 4 and Section IV).

Since the proposed algorithm, CMS (Cross-Modal Supervi-
sion), enables learning in the real world from onboard sensors
our system can continue to learn lifelong. The experience
collected online is used continually to improve the visual
system, which in turn, improves the performance of the overall
policy. We systematically evaluate this aspect of CMS in 4
challenging setups in the real world and show significant
and consistent improvements in performance with less than
7 minutes of data each day. We also analyze the qualitative
change in behavior of the visual terrain predictor compared to
the proprioceptive estimator (Section IV) and see precise foot
placement with vision. Video results can be seen at https:
//antonilo.github.io/vision_locomotion/.

II. OVERVIEW

We want a visual walking policy that can walk on complex
terrains. We train adaptive walking policies similarly to
RMA [1], but with the following significant change – we
have an additional module that estimates the upcoming
terrain geometry from the last three egocentric frames. More
concretely, the policy π takes a) an estimate of terrain in
front and below the robot γ for visual adaptation to complex
terrain, b) an estimate of the environment parameters z to
enable adaptation to variations in the environment (similar to
RMA [1])) the current proprioceptive state x, and uses them
to predict the target actions a. This system is shown in the
top part of Figure 2. Once we have such a system deployed, it
collects egocentric visual data, as well as proprioception. This
multi-modal data can be used for Cross-Modal Supervision
(CMS) to continually improve the visual estimates of the
terrain parameters γ. This is enabled by the key insight
that proprioception can get an accurate estimate of the same
terrain that the egocentric camera records ahead of time. This
allows using proprioceptive estimates of terrain to supervise
the visual estimate, as shown in the bottom half of Figure 2.
Specifically, we train a vision module to predict the future
proprioceptive estimate of terrain from the egocentric visual
input (that looks in front of the robot) by minimizing the CMS
error. Since the supervision comes from onboard sensors, we
continually do so to get an increasingly better policy with
more experience.

We initialize the CMS improvement procedure from a
blind policy πblind, which can be trained in simulation and

transferred to the real world. This policy has no visual
lookahead and uses proprioception to estimate the terrain
under the feet of the robot as the robot walks. Once we have
this policy, we can deploy it in the real world, and train a
module for visual terrain lookahead using CMS. Once we
have this visual predictor of the upcoming terrain, we can
then use the lookahead policy π (also trained in simulation)
to get a visual walking policy in the real world.

III. METHOD

A. Simulation Training

We train two walking policies (π and πblind) in simulation
to walk on complex terrains. Both the policies take the state
xt, the extrinsics vector zt, and the terrain information γt to
predict the target joint angles at at 100Hz which is converted
to torques using a PD controller. The lookahead policy π
takes an additional input γt+∆t, which is the terrain estimate
at 15cm lookahead in front of the robot. Concretely,
State Input. xt = [qt, q

′
t,at−1, zt,γt]

⊤, where qt ∈ R12

is the current joint position, q′
t ∈ R12 the joint velocity,

at−1 ∈ R12 the previous action.
Extrinsics Vector. zt ∈ R8 is a latent representation of
the environment parameters which includes payload, motor
strength, binarized foot contacts, linear velocity and friction.
Terrain Geometry Vector. γt is a latent representation of
the ground truth terrain geometry ht under the feet of the
robot, and γt+∆t is the terrain estimate 15cm infront of the
robot. This gives us:

zt = µ(et) (1)
γt = δ(ht) (2)

γt+∆t = δ(ht+∆t) (3)
at = π(xt, zt,γt,γt+∆t) (4)
at = πblind(xt, zt,γt), (5)

where µ, π and πblind are MLPs with two hidden layers and
[256, 128] and [128, 128] neurons, respectively. Note that we
use the same network δ (hidden dimensions of [64, 16]) to
process γt and γt+∆t. We train the πblind and the dependent
encoders jointly in an end-to-end manner using model-free
reinforcement learning. Once trained, we freeze the network
δ and µ, and train policy π using model-free RL. We now
explain the environment design and the reward structure we
use for RL which is shared between both the policies.
Environment Design. We recreate in simulation a set of
natural conditions to elicit robust locomotion. Specifically,
we train on fractal terrains (similar to [1], [12]) and
parameterized inclines and stairs, which typically represent
a majority of the commonly encountered terrains in human-
made environments. To design the distribution of stair cases,
we take inspiration from a classic reference in the field of
architecture [13]. According to the latter, to be comfortable for
humans, staircases should have height in the range [10, 19]cm
and lengths not smaller than 30cm. In addition, two heights
and one length should make for the length of a step, which
is approximately 1mt. We use these two recommendations

https://antonilo.github.io/vision_locomotion/
https://antonilo.github.io/vision_locomotion/

2 4 6

Time [s]

0.5

1.0

1.5

2.0

∞ 1

Blind

1 2 3

Time [s]

0.5

1.0

1.5

2.0

∞ 1

Vision

Blind

Flat Walking Walking on Stairs

Flat Walking Walking on Stairs

Blind Policy

Day 3 Policy

Estimation via proprioception

First Collision Second Collision

0

2

2

0

6

3

Time (s)

Time (s)

 | | | |

 | | | |

Proprioceptive

Proprioceptive
Visual

γt

γt

Fig. 3: Behavior Analysis: The top row shows a blind policy, which needs to touch the stairs multiple times before correctly
estimating its height and climbing over it. In contrast, a vision-based policy trained to predict the future proprioceptive
estimate of terrain can anticipates changes in the terrain geometry and adapt its gait accordingly. This speeds up the initial
climb by approximately two times and gives an overall higher success rate.

to build our parameterized staircases: we uniformly sample
step heights in the range [10, 21]cm and lengths from the set
[30, 40, 50, 60]cm.

RL Rewards. We design a reward function to promote the
agent to move with a user-defined forward and angular speed
in the ranges vx

d ∈ [0, 1]m/s and wz
d ∈ [−0.4, 0.4] rad/s,

while penalizing lateral speed and jerky motions. We define
v as linear velocity, ω as the angular velocity, α and α̇ as
joint angles and velocities, τ as joint torques, vf the feet
velocity and g the binary foot contact indicator. Accordingly,
we define the reward at time t as the sum of the following
terms:

• Forward: −∥vxd − vx∥+ vx
d

• Lateral: ∥vy∥
• Angular: −∥wz

d − wz∥+ wx
d

• Work: ∥τ⊤ · (αt −αt−1)∥
• Foot Slip: ∥diag(g)t · vf

t ∥

The scaling of each of the previous factors is 65, 1, 40, −0.05,
−0.2. We additionally add a survival bonus of 9, which is
doubled whenever the robot is tasked with walking on a

staircase.
Curriculum. We start by training exclusively on flat terrain
for 500M steps. Afterwards, we train on progressively difficult
staircases: starting from heights of 10cm and gradually
increasing the step height every 100M steps until it reaches
the maximum. During training on staircases, we sample flat
terrains with 10% probability to avoid catastrophic forgetting.
To guide the optimization, we additionally add a regression
loss to match the actions from a policy exclusively trained on
flat([12]) We randomly sample the environment parameters
such as payload, friction, and motor strength from the ranges
reported in [1].
Sim to Real Transfer. To transfer policy πblind to the real
world, we train a network g0 to predict zt and γt from
proprioception and action history. We use the same structure
and training procedure for g0 as proposed by RMA [1].

B. Vision-Based Locomotion via CMS

Once πblind is deployed in the real world, we collect
a dataset of trajectory rollouts in the real world D =
([It,xt], γt), where It is the egocentric visual input from

1480

1580

1680

1780

Blind 40% 0.51 10.5 s

Day I 40% 0.71 9.55 s

Day II 60% 0.75 10.4 s

Day III 100% 1 9 s

I: Rise 13.4 cm Going 43 cm Success Distance TTC

Blind 40% 0.58 7.25 s

Day I 60% 0.76 7.44 s

Day II 60% 0.85 6.74 s

Day III 100% 1 6.58 s

Blind 40% 0.67 14 s

Day I 60% 0.89 13.69 s

Day II 80% 0.81 10.24 s

Day III 100% 1 9 s

Success Distance TTC

Blind 60% 0.82 28 s

Day I 60% 0.85 26.58 s

Day II 80% 0.86 25.6 s

Day III 100% 1 23 s

III: Rise 15.5 cm Going 43 cm

IV: Rise 12.7 cm Going 42 cm

0 1 2 3 4 5

40

60

80

100

0 1 2 3 4 5

0.6

0.8

1.0

0 1 2 3 4 5

8

10

12

14

Training Data [min]

Time to Completion [s]Distance Success Rate [%]

Training Data [min] Training Data [min]

Data per Episode (Frames)

Day 0 Day 1 Day 2 Day 3

II: Rise 19 cm Going 29 cm

Fig. 4: Real-World Improvement: (Top Row) We find that using CMS continually improves the performance of the walking
policy, from approximately 50% to 100% in all the settings considered above. This is enabled by the use of vision, which is
trained in the real world with CMS. The final policy uses less than 30 minutes of data collected over 4 days in different
conditions. (Bottom Row) We observe that using the latest available vision policy (green) to collect data, instead of the
initial blind policy (orange), leads to faster convergence of the final visual policy. This shows that the data collected with the
latest visual policy is of higher quality. Moreover, we observe that since the vision policy can walk longer without falling, it
significantly improves the efficiency of data collection in the real world.

the onboard camera, xt is the current proprioceptive state
and γt is the current geometry estimate. We can now use this
dataset to train a convolutional neural network gi to estimate
the current extrinsics zt and the future terrain geometry γt+∆t

using supervised learning as shown in Figure 2. Having a
visual predictor of upcoming terrain we can now use the
lookahead policy π which has better performance than the
blind policy.

C. Lifelong Learning via CMS

CMS naturally allows for lifelong learning. Since we
continuously collect the dataset D with real-world experience,
we can use the γ estimate from proprioception to continuously
train the visual lookahead terrain predictor during execution
and improve performance.

IV. EXPERIMENTAL SETUP

Simulation Setup: We use the RaiSim simulator [14] for
rigid-body and contact dynamics simulation. We import the
A1 URDF file from Unitree. Each RL episode lasts for a
maximum of 1200 steps with early termination if the roll or
pitch exceeds a threshold, or the base of the robot is very
close to the ground. The control frequency of the policy is
100 Hz, and the simulation time step is 0.025s.

Vision-Based Estimator. We build a custom model to predict
the future γ to allow inference on limited compute. The input
of the model are the latest three frames (camera frequency is
15Hz), converted to grayscale and concatenated to make an
input tensor. We compute features from such tensor with a
shufflenet-V2 model [15]. We use as features the last layer
before global-average pooling to maintain spatial information.
The features are then projected to a 2dim channel space
with 1D convolutions and processed by an MLP with hidden
dimension of [128, 64] to predict γ. We additionally provide a
history of 50 IMU measurements (roll and pitch) and desired
velocity commands to the predictor. This network outputs a
128 dimensional embedding which is later concatenated with
the shufflenet features and passed through the final MLP.

V. RESULTS AND ANALYSIS

We design an evaluation procedure to answer three main
questions: (i) What are the quantitative and qualitative benefits
of vision-based locomotion over blind locomotion in the real
world? (ii) During the continual training in the real world,
what benefit does deploying the latest available policy have
over collecting all the data with a blind policy and using it at
once? (iii) What is the quantitative benefit of having a visual
lookahead on terrain geometry?

Pre-test Exposure Adaptation

Initial Camera FPV Rotated Camera FPV

Fig. 5: Prism-Adaptation Test: We perform the widely-known prism test [16] on our robot. In this test, the visual field of
the subject is altered by using a prism infront of the eyes. To simulate this, we rotate the camera from its nominal position,
and then the robot attempts to perform the task with a visually different input. (Top Row) The left image shows the visual
walking policy under nominal conditions, the center image is the performance of this visual walking policy immediately after
the camera is rotated, and the right image shows the performance after training for 80 seconds of experience. We can see
that the behavior recovers with just 1 minute of finetuning on the new visual input. (Bottom Row) The left camera is the
nominal position, and the right camera is the one after rotation. The view from the camera is shown next to the camera
orientation. Note the drastic visual change between the two images.

A. Lifelong Vision Learning

A blind policy walks very differently than a vision-based
policy. In Figure 3 we analyze the qualitative change in
behavior as a consequence of improved terrain prediction by
plotting the estimated γ as a function of time for the blind
policy and the visual walking policy. The blind policy is
clumsy but "exploratory", tapping the terrain twice before
walking on it. Conversely, the vision policy can anticipate
the geometry of the terrain and adapt its stride accordingly.
This results in a smooth and agile gait, enabling the robot to
start climbing the stairs without stumbling and speeding up
the initial climb by approximately two times.

The quality of the vision predictor improves with expe-
rience. We study the dependence between experience and
performance in Fig. 4. We select four stairs of different heights
and lengths and evaluate the performance over multiple
iterations of data collection. For each policy, we perform
five trials on each stair. We define a "day" as the policy
trained with all data collected by its predecessors. All the
metrics constantly improve as a function of time. A policy
trained on three "days" of experience, or more specifically
on 26 minutes of walking data, can climb all stairs without
a single failure. Overall, the vision policy can walk faster
(average speed is 26% higher) and more effectively (the
success rate is 50 percentage points higher) than its blind

counterpart.
Since the visual walking policy can go longer without

falling it collects data more efficiently. As shown in Fig. 4,
the amount of experience collected on average during a real-
world experiment increases by 21%. In addition, the quality
of the data collected using vision is of superior quality. For
approximately the same amount of data, the policy trained on
data collected exclusively from the blind controller performs
worse than the one trained in an iterative fashion. Intuitively,
this is due to the fact that the blind controller occasionally
stumbles or taps the terrain before taking a step, which results
in corrupted data. Conversely, a (possibly intermediate) vision
controller is more precise in its gait, leading to higher quality
data.
Generalization Experiments. We test the generalization of
our final vision policy on several challenging terrains, as
shown in Figure 1. The terrains include previously unseen
staircases, steep inclines (up to 35 degree steep), discrete
terrains, and curbs. Our approach was successful on 80%
of previously unseen staircases, 100% of curbs, and 60%
percent of inclines, which is remarkable since the vision
module was never trained for them. All generalization
videos are available at https://antonilo.github.
io/vision_locomotion/.
Visual Plasticity. The prism test is a widely-known experi-

https://antonilo.github.io/vision_locomotion/
https://antonilo.github.io/vision_locomotion/

ment designed to test adaptation to an artificial shift of the
visual field [16]. This test is generally performed on patients
to improve the spatial deficits caused by brain damage, e.g.,
after a stroke [17]. A prism adaptation session consists of
three phases: the pre-test, where a subject performs a task
without any disturbance of the visual field; the exposure,
where the subject performs the same task under an horizontal
shift of the visual field (generally wearing prism wedges); and
the adaptation, where the subject adapts to the new visual
field and can perform the task at pre-test levels. Ideally, the
subject should complete the task perfectly in the pre-test
phase and quickly adapt to the misalignment of the visual
and proprioceptive maps caused by the prism wedges.

We perform a similar test to measure the adaptation ability
of our visual locomotion policy. However, instead of adding
prism wedges, we shift the visual field by rotating the
camera on its yaw axis of approximately 30 degrees (Fig. 5).
Such shift makes the terrain in front of the robot almost
unobservable. Immediately after altering the robot’s visual
field, the policy stumbles on the steps and accumulates drift
while climbing stairs. To account for such vision impairment,
we fine-tune the vision policy by minimizing the CMS error.
Specifically, after each trial in the modified setup, we finetune
only the last 3 layers of gamma predictor for 10 epochs. After
just three trials (roughly corresponding to 80 seconds of data),
the vision policy learns to account for the systematic bias in
the visual field and manages to correctly anticipate stairs and
walk straight (Fig. 5).

Finally, we bring the robot’s camera back to its initial
position and repeat the task. In this phase, generally referred
to as post-test [17], the robot is required to quickly adjust
back to its original visual field. We repeat the same procedure
as above and observe that also in this case, after three trials,
the policy adapts back to its original visual field. We invite
the reader to visit our project web-page for a video of the
experiment.

B. The value of visual lookahead

We compare in simulation the performance of policies
with access to a larger ground-truth terrain lookahead. Table I
shows the results of this evaluation. These results indicate
a sharp increase in performance (from 58% to 75%) when
look ahead increases from 0 to 15cm.

Look Ahead Success (↑) TTF (↑) Distance (m) (↑) Smoothness (↓)

0cm (RMA [1]) 58% 0.83 4.11 34.19
5cm 64% 0.88 4.67 44.30
15cm 75% 0.95 4.73 30.77
25cm 74% 0.96 4.96 37.19
35cm 74% 0.94 4.66 31.43

TABLE I: Performance of motor policies with access to dif-
ferent ground-truth visual lookahead. The value of lookahead
saturates after 15cm.

VI. RELATED WORK

A. Blind Locomotion

Traditionally, locomotion controllers were model-
based [18], [19], [20], [21], [22], [23], [24]. However,

these methods require accurate modeling of the robot and
substantial task-specific engineering for tuning locomotion
gaits and behaviors. While some of these problems could
be mitigated with optimization-based controllers [25], [26],
these methods tend to become brittle outside of lab-controlled
conditions [27], [2]. While using learning for locomotion has
a long history [28], [29], recent deep reinforcement learning
(RL) controllers achieved impressive results in real-world
rough terrains [2], [1]. Bbeing proprioception relatively low
dimensional, training blind controllers can be done within
minutes in highly optimized simulators [30]. Independently
of the training procedure, blind controllers can only react
to varying terrain conditions, but not anticipate them. This
results in clumsy locomotion behaviours, especially when
the terrain has discontinuities.

B. Vision-Based Locomotion

Using vision unlocks locomotion on complex terrain.
However, developing such a system is challenging because of
the high dimensionality of images. These challenges pushed
prior work to favour modular systems to end-to-end ones,
essentially dividing the locomotion task in a vision and control
sub-task. Vision observations are generally used to build a
local elevation map [31], [32], [33], [10], [34], [35]. Such
maps are used to predict motion primitives (in terms of goal
velocities [34], foothold placement [31], [32], [33] or leg
motion phase [10]), which are tracked by a separate controller
module. A parallel line of work aims to directly predict
navigation commands (either in terms of foothold placement
of joint velocities) from on-board depth observations [36],
[37], [38]. Overall, the aforementioned methods achieve
impressive performance in simulation, but did not yet obtain a
similar performance in real-world conditions. One exception
is the recent work of Miki et al. [10], which obtains impressive
results in real-world conditions. However, such method has
very high sensing requirements (up to three lidars or eight
stereo modules) and computational costs, making it unfesible
on smaller scale robots as the one considered in this work.

C. Self-supervised learning

Early works in self-supervised learning for locomotion
mainly used haptic feedback to identify the terrain [39], [40],
[41], [42], [43]. Such information can be used to bias motion
over easily traversable environments [40], [44]. Another line
of works estimate traversability information (e.g. probability
of falling) from local elevation maps and used it for path
planning. The training data for such estimators is generally
collected through experience in simulation [45], [46], [47].
Similar ideas have also been investigated on other robotic
platforms [48], [49], [46]. Overall, the aformentioned works
generally operate on an high-level abstraction (traditionally,
a trajectory), generally tracked by a separate low-level
controller module. In contrast, our work aims to improve the
quality of the low-level controller via self-supervised learning,
practically increasing the range of traversable terrain through
experience.

VII. CONCLUSION

We propose CMS, a technique which uses onboard data
collected from multiple sensory inputs to continually improve
its performance. We demonstrate this idea for the task
of visual walking, using time-shifted proprioception for
supervision. Our approach show significant improvements in
performance with less than 7 minutes of data per run. One
limitation of the current system is that it does not improve
the motor system in the real world. An interesting venue
for future work is to explore the coupling of techniques that
additionally improve the motor policy along with CMS for
improving the visual system.

VIII. ACKNOWLEDGEMENT

This work was supported by the DARPA Machine Common
Sense program and by the ONR MURI award N00014-21-
1-2801. We would like to thank Sasha Sax for the helpful
discussions, Noemi Aepli for support with media material,
and Haozhi Qi for support with the website creation.

REFERENCES

[1] A. Kumar, Z. Fu, D. Pathak, and J. Malik, “Rma: Rapid motor
adaptation for legged robots,” in Robotics: Science and Systems, 2021.

[2] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learning
quadrupedal locomotion over challenging terrain,” Science robotics,
vol. 5, no. 47, p. eabc5986, 2020.

[3] A. E. Patla, “Understanding the roles of vision in the control of human
locomotion,” Gait & posture, vol. 5, no. 1, pp. 54–69, 1997.

[4] A. Patla, “Strategies for dynamic stability during adaptive human
locomotion,” IEEE Engineering in Medicine and Biology Magazine,
vol. 22, no. 2, pp. 48–52, 2003.

[5] J. M. Loomis, J. A. Da Silva, N. Fujita, and S. S. Fukusima, “Visual
space perception and visually directed action.” Journal of experimental
psychology: Human Perception and Performance, vol. 18, no. 4, p.
906, 1992.

[6] K. Bonnen, J. S. Matthis, A. Gibaldi, M. S. Banks, D. M. Levi, and
M. Hayhoe, “Binocular vision and the control of foot placement during
walking in natural terrain,” Scientific reports, vol. 11, no. 1, pp. 1–12,
2021.

[7] R. Ranftl, K. Lasinger, D. Hafner, K. Schindler, and V. Koltun,
“Towards robust monocular depth estimation: Mixing datasets for zero-
shot cross-dataset transfer,” IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 44, no. 3, 2022.

[8] R. Hartley and A. Zisserman, Multiple view geometry in computer
vision. Cambridge university press, 2003.

[9] A. Agarwal, A. Kumar, J. Malik, and D. Pathak, “Legged locomotion
in challenging terrains using egocentric vision,” 2022. [Online].
Available: https://openreview.net/pdf?id=Re3NjSwf0WF

[10] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the
wild,” Science Robotics, vol. 7, no. 62, p. eabk2822, 2022.

[11] A. Loquercio, E. Kaufmann, R. Ranftl, M. Müller, V. Koltun, and
D. Scaramuzza, “Learning high-speed flight in the wild,” Science
Robotics, vol. 6, no. 59, p. eabg5810, 2021.

[12] Z. Fu, A. Kumar, J. Malik, and D. Pathak, “Minimizing energy
consumption leads to the emergence of gaits in legged robots,” 2021.

[13] J. Templer, The Staircase: Studies of Hazards, Falls, and Safer Design.
The MIT PressNational Endowment for the Humanities/Andrew
W. Mellon Foundation Humanities Open Book Program., 03 1995.
[Online]. Available: https://doi.org/10.7551/mitpress/6434.001.0001

[14] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for
solving contact dynamics,” IEEE Robotics and Automation Letters,
vol. 3, no. 2, pp. 895–902, 2018. [Online]. Available: www.raisim.com

[15] N. Ma, X. Zhang, H.-T. Zheng, and J. Sun, “Shufflenet v2: Practical
guidelines for efficient cnn architecture design,” in Proceedings of the
European conference on computer vision (ECCV), 2018, pp. 116–131.

[16] H. Von Helmholtz, Helmholtz’s treatise on physiological optics.
Optical Society of America, 1925, vol. 3.

[17] A. Barrett, K. M. Goedert, and J. C. Basso, “Prism adaptation for
spatial neglect after stroke: translational practice gaps,” Nature Reviews
Neurology, vol. 8, no. 10, p. 567, 2012.

[18] J. Buchli, M. Kalakrishnan, M. Mistry, P. Pastor, and S. Schaal, “Com-
pliant quadruped locomotion over rough terrain,” in 2009 IEEE/RSJ
international conference on Intelligent robots and systems. IEEE,
2009, pp. 814–820.

[19] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, apr 2014.

[20] M. Khoramshahi, H. J. Bidgoly, S. Shafiee, A. Asaei, A. J. Ijspeert,
and M. N. Ahmadabadi, “Piecewise linear spine for speed–energy
efficiency trade-off in quadruped robots,” Robotics and Autonomous
Systems, vol. 61, no. 12, pp. 1350–1359, dec 2013.

[21] D. J. Hyun, J. Lee, S. Park, and S. Kim, “Implementation of trot-to-
gallop transition and subsequent gallop on the MIT cheetah i,” The
International Journal of Robotics Research, vol. 35, no. 13, pp. 1627–
1650, jul 2016.

[22] C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo,
and M. Hutter, “Dynamic locomotion and whole-body control for
quadrupedal robots,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 3359–3365.

[23] M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, and S. Schaal,
“Learning, planning, and control for quadruped locomotion over
challenging terrain,” The International Journal of Robotics Research,
vol. 30, no. 2, pp. 236–258, 2011.

[24] K. Byl and R. Tedrake, “Dynamically diverse legged locomotion for
rough terrain,” in 2009 IEEE International Conference on Robotics
and Automation, 2009, pp. 1607–1608.

[25] C. Gehring, S. Coros, M. Hutter, C. Dario Bellicoso, H. Heijnen,
R. Diethelm, M. Bloesch, P. Fankhauser, J. Hwangbo, M. Hoepflinger,
and R. Siegwart, “Practice makes perfect: An optimization-based
approach to controlling agile motions for a quadruped robot,” IEEE
Robotics Automation Magazine, vol. 23, no. 1, pp. 34–43, 2016.

[26] R. Calandra, A. Seyfarth, J. Peters, and M. P. Deisenroth, “Bayesian op-
timization for learning gaits under uncertainty,” Annals of Mathematics
and Artificial Intelligence, vol. 76, no. 1-2, pp. 5–23, jun 2015.

[27] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun,
and M. Hutter, “Learning agile and dynamic motor skills for legged
robots,” Science Robotics, vol. 4, no. 26, p. eaau5872, 2019.

[28] J. Z. Kolter and A. Y. Ng, “The stanford LittleDog: A learning and
rapid replanning approach to quadruped locomotion,” The International
Journal of Robotics Research, vol. 30, no. 2, pp. 150–174, jan 2011.

[29] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G.
Atkeson, and J. Kuffner, “Optimization and learning for rough terrain
legged locomotion,” The International Journal of Robotics Research,
vol. 30, no. 2, pp. 175–191, 2011.

[30] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk
in minutes using massively parallel deep reinforcement learning,” in
Conference on Robot Learning. PMLR, 2022, pp. 91–100.

[31] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “Deepgait:
Planning and control of quadrupedal gaits using deep reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp.
3699–3706, 2020.

[32] A. Agrawal, S. Chen, A. Rai, and K. Sreenath, “Vision-aided dynamic
quadrupedal locomotion on discrete terrain using motion libraries,”
arXiv preprint arXiv:2110.00891, 2021.

[33] M. Gaertner, M. Bjelonic, F. Farshidian, and M. Hutter, “Collision-free
mpc for legged robots in static and dynamic scenes,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 8266–8272.

[34] Z. Fu, A. Kumar, A. Agarwal, H. Qi, J. Malik, and D. Pathak, “Coupling
vision and proprioception for navigation of legged robots,” arXiv
preprint arXiv:2112.02094, 2021.

[35] H.-W. Park, P. M. Wensing, S. Kim et al., “Online planning for
autonomous running jumps over obstacles in high-speed quadrupeds,”
Robotics: Science and Systems, 2015.

[36] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. bae
Kim, and P. Agrawal, “Learning to jump from pixels,” in 5th
Annual Conference on Robot Learning, 2021. [Online]. Available:
https://openreview.net/forum?id=R4E8wTUtxdl

[37] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans,
S. Ha, J. Tan, and T. Zhang, “Visual-locomotion: Learning
to walk on complex terrains with vision,” in 5th Annual

https://openreview.net/pdf?id=Re3NjSwf0WF
https://doi.org/10.7551/mitpress/6434.001.0001
www.raisim.com
https://openreview.net/forum?id=R4E8wTUtxdl

Conference on Robot Learning, 2021. [Online]. Available: https:
//openreview.net/forum?id=NDYbXf-DvwZ

[38] R. Yang, M. Zhang, N. Hansen, H. Xu, and X. Wang,
“Learning vision-guided quadrupedal locomotion end-to-end with
cross-modal transformers,” in International Conference on Learning
Representations, 2022. [Online]. Available: https://openreview.net/
forum?id=nhnJ3oo6AB

[39] M. A. Hoepflinger, C. D. Remy, M. Hutter, L. Spinello, and R. Sieg-
wart, “Haptic terrain classification for legged robots,” in 2010 IEEE
International Conference on Robotics and Automation. IEEE, 2010,
pp. 2828–2833.

[40] K. Walas, “Terrain classification and negotiation with a walking robot,”
Journal of Intelligent & Robotic Systems, vol. 78, no. 3, pp. 401–423,
2015.

[41] A. Valada and W. Burgard, “Deep spatiotemporal models for robust
proprioceptive terrain classification,” The International Journal of
Robotics Research, vol. 36, no. 13-14, pp. 1521–1539, 2017.

[42] M. Hoffmann, K. Štěpánová, and M. Reinstein, “The effect of motor
action and different sensory modalities on terrain classification in a
quadruped robot running with multiple gaits,” Robotics and Autonomous
Systems, vol. 62, no. 12, pp. 1790–1798, 2014.

[43] X. A. Wu, T. M. Huh, R. Mukherjee, and M. Cutkosky, “Integrated
ground reaction force sensing and terrain classification for small legged
robots,” IEEE Robotics and Automation Letters, vol. 1, no. 2, pp. 1125–
1132, 2016.

[44] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and
M. Hutter, “Where should i walk? predicting terrain properties from
images via self-supervised learning,” IEEE Robotics and Automation
Letters, vol. 4, pp. 1509–1516, 2019.

[45] B. Yang, L. Wellhausen, T. Miki, M. Liu, and M. Hutter, “Real-time
optimal navigation planning using learned motion costs,” in 2021 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2021, pp. 9283–9289.

[46] J. Guzzi, R. O. Chavez-Garcia, M. Nava, L. M. Gambardella, and
A. Giusti, “Path planning with local motion estimations,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 2586–2593, 2020.

[47] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti,
“Learning ground traversability from simulations,” IEEE Robotics and
Automation letters, vol. 3, no. 3, pp. 1695–1702, 2018.

[48] G. Kahn, P. Abbeel, and S. Levine, “Badgr: An autonomous self-
supervised learning-based navigation system,” IEEE Robotics and
Automation Letters, vol. 6, no. 2, pp. 1312–1319, 2021.

[49] M. Nava, J. Guzzi, R. O. Chavez-Garcia, L. M. Gambardella, and
A. Giusti, “Learning long-range perception using self-supervision from
short-range sensors and odometry,” IEEE Robotics and Automation
Letters, vol. 4, no. 2, pp. 1279–1286, 2019.

https://openreview.net/forum?id=NDYbXf-DvwZ
https://openreview.net/forum?id=NDYbXf-DvwZ
https://openreview.net/forum?id=nhnJ3oo6AB
https://openreview.net/forum?id=nhnJ3oo6AB

	INTRODUCTION
	Overview
	Method
	Simulation Training
	Vision-Based Locomotion via CMS
	Lifelong Learning via CMS

	Experimental Setup
	Results and Analysis
	Lifelong Vision Learning
	The value of visual lookahead

	Related Work
	Blind Locomotion
	Vision-Based Locomotion
	Self-supervised learning

	Conclusion
	Acknowledgement
	References

