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Abstract—In deployment scenarios such as homes and ware-
houses, mobile robots are expected to autonomously navigate
for extended periods, seamlessly executing tasks articulated in
terms that are intuitively understandable by human operators.
We present GO To Any Thing (GOAT), a universal navigation
system capable of tackling these requirements with three key
features: a) Multimodal: it can tackle goals specified via category
labels, target images, and language descriptions, b) Lifelong:
it benefits from its past experience in the same environment,
and c) Platform Agnostic: it can be quickly deployed on robots
with different embodiments. GOAT is made possible through a
modular system design and a continually augmented instance-
aware semantic memory that keeps track of the appearance of
objects from different viewpoints in addition to category-level
semantics. This enables GOAT to distinguish between different
instances of the same category to enable navigation to targets
specified by images and language descriptions.

In experimental comparisons spanning over 90 hours in 9
different homes consisting of 675 goals selected across 200+
different object instances, we find GOAT achieves an overall
success rate of 83%, surpassing previous methods and ablations
by 32% (absolute improvement). GOAT improves with experience
in the environment, from a 60% success rate at the first goal to a
90% success after exploration. In addition, we demonstrate that
GOAT can readily be applied to downstream tasks such as pick
and place and social navigation.

I. INTRODUCTION

Consider a robot starting in an unseen environment as shown
in Figure 1, and suppose it is asked to find a dining table
image (goal 1). Navigating to this goal requires recognizing
that the picture shows a dining table and having the semantic
understanding of indoor spaces to efficiently explore the home
(e.g. dining tables are not found in the bathroom). Suppose
the robot is then asked to Go to the potted plant next to
the couch (goal 2). This requires visual grounding of the text
instruction in the physical space. The next instruction is to Go
to a SINK (goal 3), the capitalization emphasizing that any
object of the category SINK is a valid goal. In this example,
the robot has already seen a sink in the house during the
first task, so it should remember its location and be able to
plan a path to reach it efficiently. This requires the robot to
build, maintain and update a lifelong memory of the objects
in the environment, their visual and linguistic properties and
their latest location. Given any new multimodal goal, the
robot should also be able to query the memory to determine
whether the goal object already exists in the memory or
requires further exploration. In addition to these capabilities
of multimodal perception, exploration, lifelong memory, and
goal localization, the robot also needs effective planning and

Fig. 1. GOAT (GO to Any Thing) task. The GOAT task requires
lifelong learning, meaning taking advantage of past experience in
the same environment, for multimodal navigation. The robot must be
able to reach any object specified in any way and remember object
locations to come back to them.

control to reach the goal while avoiding obstacles.
In this paper, we present GO to Any Thing (GOAT), a

universal navigation system with three key features:
a) Multimodal: it can tackle goals specified via category
labels, target images, and language descriptions, b) Lifelong:
it benefits from its past experience in the same environment
in the form of a map of objects instances (as opposed to
stored implicitly within the parameters of a machine learning
model) updated over time, and c) Platform Agnostic: it can be
seamlessly deployed on robots with different embodiments —
we deploy GOAT on a quadruped and a wheeled robot. GOAT
is made possible through the design of an Object Instance
Memory that keeps track of the appearance of objects from
different viewpoints in addition to category-level semantics.
This enables GOAT to distinguish between different instances
of the same category to enable navigation to targets specified
by images and fine-grained language descriptions. This mem-
ory is continually augmented as the agent spends more time
in the environment, leading to improved efficiency in reaching
goals over time.

In experimental comparisons spanning over 90 hours in 9



different homes consisting of 675 goals selected across 200+
different object instances, we find GOAT achieves an overall
success rate of 83%, surpassing previous methods and abla-
tions by 32% (absolute improvement). GOAT performance im-
proves with experience in the environment from a 60% success
rate at the first goal to 90% success rate once the environment
is fully explored. In addition, we demonstrate that GOAT,
as a general navigation primitive, can readily be applied to
downstream tasks like pick and place and social navigation.
GOAT’s performance can in part be attributed to the modular
nature of the system: it leverages learning in the components
in which it is required (i.e. object detection, image/language
matching) while still leveraging strong classical methods (i.e.
mapping and planning). Modularity is also responsible for
the ease of deployment across different robot embodiments
and downstream applications, as individual components can
be easily adapted or new components introduced.

II. RELATED WORK

While there is a large body of work on navigation [58],
most only evaluate in simulation or develop specialized so-
lutions to tackle a subset of these tasks. Classical robotics
works [57] employed geometric reasoning to solve navigation
to geometric goals. With advances in semantic understanding
of images, researchers started using semantic reasoning to
improve exploration efficiency in novel environments [8] and
tackling semantic goals specified via categories [47, 21, 3,
7, 32, 53, 6], images [63, 9, 22, 33, 34] and language
instructions [42, 56, 18, 40, 11, 26]. Most of these methods
are a) specialized to a single task (i.e. are designed only
for language goals or only for image goals), b) only tackle
a single goal in each episode (i.e. are not lifelong), and
c) evaluated only in simulation (or rudimentary real-world
environments). GOAT advances upon these works on all three
fronts and tackles multiple goal specifications in a lifelong
manner in the real world. This supersedes past works that
only innovate along one axis, e.g. past works [59, 9] tackle
a sequence of goal but goals are limited to either be object
goals [59] or image goals [9] in simulation, or rely on a pre-
exploration phase [11]. [1] tackles flexible goal specifications
but only shows simulated results for one goal per episode.
This work builds on top of the system from [19], leveraging the
same modular structure; using SLAM and pre-trained object
detectors to maintain a semantic map for planning. While [19]
can only reach one categorical goal, in this paper, we introduce
a lifelong memory that enables this system to reach a sequence
of goals including language and image goals.

GOAT maintains a map of the environment as well as
visual landmarks - egocentric views of object instances -
which are stored in our novel instance-aware object mem-
ory. This memory should be queryable with both images
and natural language to satisfy GOAT’s multimodality re-
quirement. We enable this by storing raw images for visual
landmarks, as opposed to features, allowing us to leverage
recent advances in image-image matching and image-language
matching independently. We use Contrastive Language-Image

Pretraining (CLIP) [46] for image-language matching and
SuperGlue [50] for image-image matching. CLIP follows a
long history of associating text with images or regions in
images [25, 16, 17, 15, 31, 35, 44] and has led to the
development of language-conditioned open-vocabulary object
detectors [62, 37, 43]. CLIP itself, or object detectors derived
from CLIP have recently been used for robotic tasks, e.g.
object search [18], mobile manipulation [61], and table-top
manipulation [54]. Similarly, SuperGlue follows a long history
of geometric image matching [27, 38] with recent learning-
based methods [50] leading to better performance in certain
situations. Recent work has started evaluating these in embod-
ied settings where a robot must navigate either to an image in
the world [33, 9] or to an image corresponding to a particular
object instance [34].

GOAT’s memory representation builds upon a rich set of
scene representation in robotics over the last 40 years: occu-
pancy maps (with geometry [14], explicit semantics [49, 10],
or implicit semantics [21]), topological representations [9, 12,
36, 51], and neural feature fields [55, 52, 41, 5]. Many of these
works have started using pre-trained vision-language features
like CLIP [46] and either projecting them into 3D directly [29]
or capturing them in an implicit neural field [52, 5]. Para-
metric representations summarize the environment into low-
dimensional abstract features, while non-parametric represen-
tations view the collection of images itself as a representation.
Our work leverages aspects of both. We build a semantic map
for navigating to objects but also store raw images associated
with discovered objects (landmarks). Dense representations
storing CLIP features at every location [26] don’t yet scale to
entire homes without server-grade GPUs, whereas our sparse
landmark representation does.

III. GOAT TASK

We formalize the Go to Any Thing task T as follows.
We construct navigation episodes consisting of a sequence of
unseen goal objects to be reached in unseen environments. The
robot is spawned at a random location. At every timestep t,
the robot receives observations consisting of an RGB image It,
depth image Dt, and pose reading xt from onboard sensors,
as well as the current object goal gk, k ∈ {1, 2, .., N}, which
consists in an object category (SINK, CHAIR), an image or
language description (“the potted plant next to the couch”,
“the black and white striped bed”) uniquely identifying an
object instance in the environment. The robot must reach the
goal object gk as efficiently as possible within a limited time
budget. As soon as it reaches the current goal or when the
time budget is exhausted, the robot receives the next goal
to navigate to, gk+1. In searching for this sequence of goals
the agent is allowed to maintain a memory computed using
incoming observations. In this way, if gk+1 has been observed
during the process of reaching gk the agent can often more
efficiently navigate to gk+1.



Fig. 2. GOAT system overview. The perception system detects and localizes object instances, the global policy outputs high-level navigation
commands depending on whether the robot should explore or reach a goal already in memory, and the local policy executes these commands.

IV. GOAT METHOD

a) GOAT Agent: Figure 2 shows an overview of the
GOAT system. As the agent moves through the scene, the
perception system processes RGB-D camera inputs to detect
object instances and localize them into a top-down semantic
map of the scene. When searching for image or language
goals, it is insufficient to simply find objects of the correct
class (i.e. if the goal is an image of a specific black chair,
finding a brown chair is incorrect). Previous works that only
maintain a semantic map ([19]) are unable to solve this
problem.

To this end, in addition to the semantic map, GOAT main-
tains an Object Instance Memory that localizes individual in-
stances of objects in the map and stores images in which each
instance has been viewed. This Object Instance Memory gives
GOAT the ability to perform lifelong learning for multimodal
navigation. When a new goal is specified to the agent, a global
policy first searches the Object Instance Memory to see if the
goal has already been observed. After an instance is selected,
its stored location in the map is used as a long-term point
navigation goal. If no instance is localized, the global policy
outputs an exploration goal. A local policy finally computes
actions towards the long-term goal.

b) Perception: Figure 3 shows the perception system. It
takes as input the current depth image Dt, RGB image It,
and pose reading xt from onboard sensors. It uses an off-the-
shelf model to segment instances in the RGB image. We use
MaskRCNN [24] with a ResNet50 [23] backbone pretrained
on MS-COCO for object detection and instance segmentation.
We chose MaskRCNN as current open-set models, such as
Detic [62], were less reliable for common categories in early

experiments. We also estimate depth to fill in holes for
reflective objects in raw sensor readings using MiDaS [48]
monocular depth estimation (additional details in supplemen-
tary). We project the first-person semantic segmentation into
a point cloud, bin the point cloud into a 3D semantic voxel
map, and finally sum over the height to compute a 2D instance
map mt. For each detected object instance, we also store the
image in which the object was detected as part of the object
instance memory.

c) Semantic Map Representation: The semantic map (mt

at timestep t) is a spatial representation of the environment that
keeps track of object locations, obstacles, and explored areas.
Concretely, it is a K×M×M matrix of integers where M×M
is the map size, and K is the number of map channels. Each
cell of this spatial map corresponds to 25cm2 (5cm × 5cm)
in the physical world. Map channels K = C + 4 where
C is the number of semantic object categories (C = 15 in
our experiments), and the remaining 4 channels represent the
obstacles, the explored area, and the agent’s current and past
locations. An entry in the map is non-zero if the cell contains
an object of a particular semantic category, an obstacle, or is
explored, depending on the channel, and zero otherwise. In
this semantic map representation, the first C channels store
the unique instance ids of the projected objects. The map is
initialized with all zeros at the beginning of an episode, and
the agent starts at the center of the map facing east. While
this map representation has been used for previous methods for
object goal navigation, this is insufficient for reaching specific
objects specified by language or image goals (i.e. find the
specific book depicted in an image instead of just finding
any book). To solve this problem we must track and store



Fig. 3. Perception and memory update. The perception system processes RGB-D input to infill depth, segment object instances, project
them into a top-down semantic map, and store views in the Object Instance Memory.

information about individual object instances. To achieve this
we maintain an Object Instance Memory (Figure 4 A).

d) Object Instance Memory: Our Object Instance Mem-
ory tracks individual instances of objects and stores every
image (along with the detection bounding box) in which that
object has been detected. Every time an object oi is detected
in the incoming RGB observation I , the depth image is used
to project the location of the detected object into the map. If
the projection of oi spatially overlaps an existing object oj ,
they are considered to be the same object, and I is added to
the list of images associated with oj . If oi does not overlap
an existing object, it is considered a new instance.

e) Dynamic Memory: In real-world settings, the envi-
ronment may be dynamic, with humans creating or removing
obstacles, and relocating objects. To handle these cases we
allow our scene representation to be dynamic as well. We take
a simple approach: when new observations are received from
the sensors, we overwrite the relevant cells in the semantic map
based on the updated occupancy information. If a region was
previously observed to contain an object and a new observation
shows that it is vacant, it is marked as vacant. If a region was
previously unoccupied and is observed to be traversable, it
is marked as traversable. With this approach, the agent will
still be able to navigate through regions that were previously
marked as occluded and remove objects from the map that
have been moved.

f) Global Policy: shows the global policy. When only
searching for category goals (the ObjectNav task) goal local-
ization is trivial. Simply find the closest cell in the semantic
map that matches the desired class. However, when seeking
image or language goals, finding the correct object instance is
not so simple. In the GOAT system, the global policy (Figure
4 (B)) selects the correct object instance for each goal.

When a new goal is specified to the agent, the global policy
πG first searches the Object Instance Memory to see if the
goal has already been observed. The method for matching
goals to object instances is tailored to the modality of the
goal specification. For category goals, we simply find the
nearest object of the goal category in the semantic map. For
language goals, we first extract an object category from the
language description (by prompting with Mistral 7B [30] in
our experiments), then match CLIP features of the language
description with CLIP [46] features of each object instance
of the inferred category in our Object Instance Memory.
Similarly, for image goals, we first extract an object category
from the image with MaskRCNN, then match keypoints of
the goal image with keypoints of each object instance of the
inferred category with an off-the-shelf SuperGlue [50] model
(additional details and ablations about image and language
matching in supplementary).

While the environment is being explored, we consider the
object instance to match a given goal if the similarity score
crosses a threshold (0.28 for CLIP, 6.0 for Superglue). When
the environment is fully explored, we simply select the object
instance with the highest similarity score. After an instance is
selected, its stored location in the top-down map is used as
a long-term point navigation goal. If no instance is localized,
the global policy outputs an exploration goal. We use frontier-
based exploration [60], which selects the closest unexplored
region as the goal.

g) Local Policy: Given a long-term goal output by the
global policy πG, the local policy πL uses the Fast Marching
Method to plan a path towards it. On the Spot robot, we
use the built-in point navigation controller to reach waypoints
along this path. On the Stretch robot with no such built-in
controller, we plan the first low-level action along this path



deterministically as in [19].

V. RESULTS

We evaluate the ability of the GOAT agent to tackle the
GOAT task, i.e., reach a sequence of unseen multimodal object
instances in unseen environments.

We deployed GOAT on and conducted qualitative experi-
ments with Boston Dynamics Spot and Hello Robot Stretch
robots. We conducted large-scale quantitative experiments with
GOAT on Spot (due to its higher reliability) against 3 baselines
in 9 real-world homes to reach a total of 200+ different
object instances (see Figure 5). A demo video qualitatively
illustrating our results can be found in the supplementary.

a) Experimental Setting: We evaluate the GOAT agent
as well as three baselines in nine visually diverse homes
(see Figure 5) with 10 episodes per home consisting of 5-
10 object instances randomly selected out of objects available
in the home, representing 200+ different object instances
in total (more visualizations in supplementary). We selected
goals across 15 different object categories (‘chair’, ‘couch’,
‘potted plant’, ‘bed’, ‘toilet’, ‘tv’, ‘dining table’, ‘oven’, ‘sink’,
‘refrigerator’, ‘book’, ‘vase’, ‘cup’, ‘bottle’, ‘teddy bear’).
These categories were chosen to cover a wide range of object
sizes (from cups to couches), classes with multiple instances
(there may be many chairs), and objects that may be co-located
in a 2D map (book resting on a dining table). We took a
picture of each object for image goals following the protocol
in Krantz et al. [34], and annotated 3 different language
descriptions uniquely identifying the object. To generate an
episode within a home, we sampled a random sequence of 5-10
goals split equally among language, image, and category goals
among all object instances available. We evaluate approaches
in terms of success rate to reach the goal and SPL [2], which
measures path efficiency as the ratio of the agent’s path length
over the optimal path length. We report evaluation metrics per
goal within an episode with two standard deviation error bars.

b) Baselines: We compare GOAT to three baselines:
1. CLIP on Wheels [18] - the existing work that comes closest
to being able to address the GOAT problem setting - which
keeps track of all images the robot has seen and, when given a
new goal object, decides whether the robot has already seen it
by matching CLIP [46] features of the goal image or language
description with CLIP features of all images in memory,
2. GOAT w/o Instances, an ablation that treats all goals as
object categories, i.e., always navigating to the closest object
of the correct category instead of distinguishing between
different instances of the same category as in [19], allowing
us to quantify the benefits of GOAT’s instance awareness, and
3. GOAT w/o Memory, an ablation that resets the semantic
map and Object Instance Memory after every goal, allowing
us to quantify the benefits of GOAT’s lifelong memory.

c) Quantitative Results: Table I reports metrics for each
method aggregated over the 90 episodes. GOAT achieves 83%
average success rate (94% for object categories, 86% for
image goals, and 68% for language goals). We observed that
localizing language goals is harder than image goals (detailed

in the Discussions section). CLIP on Wheels [18] attains a
51% success rate, showing that using GOAT’s Object Instance
Memory for goal matching is more effective than CLIP feature
matching against all previously viewed images. GOAT w/o
Instances achieves a 49% success rate, with 29% and 28%
success rates for image and language goals, respectively. This
shows the need to keep track of enough information in memory
to distinguish between different object instances, which [19]
couldn’t do. GOAT w/o memory achieves 61% success rate
with an SPL of only 0.19 compared to the 0.64 of GOAT. It
has to re-explore the environment with every goal, explaining
the low SPL and low success rate due to many time-outs. This
shows the need to keep track of a lifelong memory. Figure 6
further emphasizes this point: GOAT performance improves
with experience in the environment from a 60% success rate
(0.20 SPL) at the first goal to 90% (0.80 SPL) for goals
5-10 after thorough exploration. Conversely, GOAT without
memory shows no improvement from experience, while COW
benefits but plateaus at much lower performance. Figure 7
shows example trajectories from GOAT and baselines.

VI. APPLICATIONS

As a general navigation primitive, the GOAT policy can
readily be applied to downstream tasks such as pick and place
and social navigation.
Open Vocabulary Mobile Manipulation: The ability to
perform rearrangement tasks is essential in any deployment
scenarios for mobile robots (homes, warehouses, factories)
[4, 61, 13, 28, 20]. These are commands such as “pick up
my coffee mug from the coffee table and bring it to the sink,”
requiring the agent to search for and navigate to an object, pick
it up, search for and navigate to a receptacle, and place the ob-
ject on the receptacle. The GOAT navigation policy can easily
be combined with pick and place skills (we use built-in skills
from Boston Dynamics) to fulfill such requests. We evaluate
this ability on 30 such queries with image/language/category
objects and receptacles across 3 different homes. GOAT can
find objects and receptacles with 79% and 87% success rates,
respectively. Demo video and visualizations can be found in
supplementary.
Social Navigation: To operate in human environments, mobile
robots need the ability to treat people as dynamic obstacles,
plan around them, and search for and follow people [39, 45].
To give the GOAT policy such skills, we treat people as
image object instances with the PERSON category. For
each participant, we take a front-facing full-body image to
be used as the image goal for that participant. This enables
GOAT to deal with multiple people, just like it can deal with
multiple instances of any object category. Using the dynamic
memory protocol described in Section IV GOAT will remove
someone’s previous location from the map after they have
moved, and continue mapping their new location. This allows
GOAT to track a moving person.

To evaluate GOAT’s ability to treat people as dynamic
obstacles, we conducted a pilot study including moving people
as obstacles. In one of the novel homes used for evaluation,



Fig. 4. (A) Object Instance Memory. We cluster object detections, along with image views in which they were observed, into instances
using their location in the semantic map and their category. (B) Global Policy. When a new goal is specified, the global policy first tries to
localize it within the Object Instance Memory. If no instance is localized, it outputs an exploration goal.



Fig. 5. “In-the-wild” evaluation. We deploy the GOAT navigation policy in 9 visually diverse homes and evaluate in on reaching 200+
different object instances as category, image, or language goals. GOAT is platform-agnostic: we deploy it on both Boston Dynamics Spot
and Hello Robot Stretch.



TABLE I
NAVIGATION PERFORMANCE IN UNSEEN NATURAL HOME ENVIRONMENTS. WE COMPARE GOAT TO THREE BASELINES IN 9 UNSEEN HOMES WITH

10 EPISODES PER HOME CONSISTING OF 5-10 IMAGE, LANGUAGE, OR CATEGORY GOAL OBJECT INSTANCES IN TERMS OF SUCCESS RATE AND SPL [2], A
MEASURE OF PATH EFFICIENCY, PER GOAL INSTANCE.

SR per Goal SPL Per Goal
Image Language Category Average Image Language Category Average

GOAT 86.4± 1.1 68.2± 1.5 94.3± 0.8 83.0± 0.7 0.679± 0.013 0.511± 0.014 0.737± 0.010 0.642± 0.007
CLIP on Wheels 46.1± 1.8 40.8± 1.9 65.3± 1.5 50.7± 1.0 0.368± 0.014 0.317± 0.013 0.569± 0.015 0.418± 0.008

GOAT w/o Instances 28.6± 1.7 27.6± 1.6 94.1± 0.8 49.4± 0.8 0.219± 0.013 0.222± 0.012 0.739± 0.011 0.398± 0.007
GOAT w/o Memory 59.4± 1.5 45.3± 1.6 76.4± 1.3 60.3± 0.8 0.193± 0.020 0.134± 0.022 0.239± 0.021 0.188± 0.012
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Fig. 6. Navigation performance based on sequential goal count. GOAT performance improves with experience in the environment:
from a 60% success rate (0.2 SPL) at the first goal to 90% (0.8 SPL) for goals 5-10 after thorough exploration. Conversely, GOAT without
memory shows no improvement from experience, while COW benefits but plateaus at much lower performance.

we collected an additional 5 trajectories (5-10 navigation goals
each) during which people continuously moved throughout
the scene. Either one or two people (chosen randomly) were
instructed to walk to a randomly selected sequence of objects
(waiting briefly at each object) in the scene while the robot
was navigating. They were instructed to treat the robot as
they would another human (i.e. not walking directly into the
robot). In this setting, GOAT preserves an 81% success rate.
We further evaluate the ability of GOAT to search for and
follow people by introducing people as image goals in 5
additional trajectories following the same protocol. GOAT can
localize and follow people with 83% success, close to the 86%
success rate for static image instance goals. Demo video and
visualizations can be found in supplementary.

VII. DISCUSSION

a) Modularity allows GOAT to Achieve Robust General-
Purpose Navigation in the Real World: The GOAT system as a
whole is a robust navigation platform, achieving a success rate
of 83% across image, language, and category goals in the wild
and up to 90% once the environment is fully explored (Table
I, Figure 6). This is possible in-part due to the modular nature
of the system. A modular system allows learning to be applied
in the components in which it is required (i.e. object detec-
tion, image/language matching), while still leveraging strong
classical methods (i.e. mapping and planning). Furthermore,
for learning-based components, we can use models trained on
large datasets (i.e. CLIP, MaskRCNN), or specialized tasks
(monocular depth estimation) to full effect, where a task-

specific end-to-end learned approach would be limited by the
available data for this specific task. GOAT is able to tie all of
these components together using our Object Instance memory
to achieve state-of-the-art performance for lifelong real-world
navigation.

Furthermore, the modular design of GOAT allows it to be
easily adapted to different robot embodiments and a variety of
downstream applications. GOAT can be deployed on any robot
with an RGB-D camera, a pose sensor (onboard SLAM), and
the ability to execute low-level locomotion commands (move
forward, turn left, turn right). GOAT’s modularity eliminates
the need for new data collection or training when deployed
on a new robot platform. This stands in contrast to end-to-
end methods, which would require new data collection and
retraining for every different embodiment.

Consequently, new modalities of goals can easily be added
to the system as long as a mechanism for matching exists and
the robot is equipped with the correct sensors. For example,
if goals are specified by 3D models, all that is required is a
module for estimating the 3D shape of detected objects and
for matching against the specified goals.

b) Matching Performance During Exploration Lags Be-
hind Performance After Exploration: Using a predefined
threshold for goal-to-object matching scores during explo-
ration can be error-prone (visualization in supplementary). On
the other hand, once the scene has been explored, the agent
has the privilege of selecting the best matching instance across
all observed objects. This is reflected in the improved perfor-
mance of the agent post-exploration (Figure 6). When the



Fig. 7. Online evaluation qualitative trajectories. We compare methods on the same sequence of 5 goals (top) in the same environment.
GOAT localizes all goals and navigates efficiently (with an SPL of 0.78). CLIP on Wheels localizes only 1 out of 5 goals, illustrating the
superiority of GOAT’s Object Instance Memory for matching. GOAT without memory is able to localize 4 our of 5 goals, but with an SPL
of only 0.40 as it has to re-explore the environment with every goal. See Section V for details.



environment is fully explored, failures are almost exclusively
due to failures in matching the correct goal. The most common
failure is a language goal being matched against the an object
of the correct class, but the wrong instance (i.e. The language
specifies a bed, but the system matches against a different bed).
Examples of these failures can be seen in supplementary figure
S2, and additional details of matching matching performance
can be found in supplementary.

c) Image Goal Matching is More Reliable than Lan-
guage Goal Matching: We observe that image-to-image goal
matching is more successful at identifying goal instances as
compared to matching instance views with semantic features
of language descriptions of the goal. This is expected because
SuperGLUE-based image keypoint matching can leverage
correspondences in geometric properties between predicted
instances and goal objects. However, the semantic feature
encodings from CLIP can be incapable of capturing fine-
grained instance properties – that can often be crucial for
goal matching. As a result, navigation with image goals is
significantly more successful (Table I, SR 86.4 vs. 68.2).

d) Real-World Open-Vocabulary Detection: Limitations
and Opportunities: An interesting and noteworthy observation
is that despite the rapid advances in open (or large) vocabulary
vision-and-language models (VLMs) [37, 43], we find their
performance to be significantly worse than a Mask RCNN
model from 2017. We attribute this observation to two possible
hypotheses: (i) open-vocabulary models trade-off robustness
for being more versatile, and supporting more queries, and
(ii) the internet-scale weakly labeled data sources used to
train modern VLMs under-represent the kind of embodied
interaction data that would benefit robots occupying real-
world environments with humans. The latter represents a
challenging opportunity to develop such large-scale models
that are simultaneously versatile and robust for embodied
applications in real-world environments.

e) Generalization to New Environments: While end-to-
end learning-based solutions may suffer from overfitting on a
few training scenes, the modular design of GOAT is able to
avoid this issue. The generalization of GOAT is only limited
by the robustness of its components, many of which have been
trained on large internet-scale data. In real-world experiments,
in 9 visually diverse homes we found no generalization issues
in any of the components of GOAT. That being said, GOAT
was designed for indoor navigation and consequently was
not tested in outdoor settings where low-level locomotion
is far more challenging. While utilizing large-scale models
such as CLIP improves generalization, GOAT also inherits
the limitations and biases of these models. For example, if
the majority of the objects used for training the object detector
originated from North America, the system’s performance may
be diminished when operating in other regions.

f) Computational Constraints: While the memory uti-
lization of GOAT is consistently increasing throughout an
episode, when the proper steps have been taken to optimize
performance, this was not a hindrance in our experiments.
Storing compressed images as 480× 640 requires only 6 MB

total for all images by the end of an episode on average.
Similarly, only storing CLIP features for language matching
requires minimal memory (only 257 KB on average for an
entire trajectory), and allows for fast vectorized comparison
for language matching (7ms on average and 29ms at max on
a single GPU). The computational costs for image-to-image
comparisons remain under control too as we continue to only
match to the instances belonging to the category of interest.
Matching a single image pair takes 45ms on a single GPU,
and the matching takes 0.9s on average (and 2.6s at max) after
the environment is fully explored — these matching times
were more than fast enough for our experiments. However,
for extremely long trajectories a mechanism to increase paral-
lelism or cull duplicate images would be necessary to increase
matching speeds.

g) Additional Limitations: To achieve robust image-
matching results GOAT’s memory system stores all images in
which objects have been detected. For very small or compute-
constrained robots this may be too memory inefficient and
images should be sub-sampled. Like all systems that rely on
2D mapping, GOAT is designed to handle only a single story
in a building. While this is remedied by detecting when a floor
change has happened and maintaining a separate map per floor,
we leave this to future work.
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